Clinically viable myocardial CCTA segmentation for measuring vessel-specific myocardial blood flow from dynamic PET/CCTA hybrid fusion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-02-15

AUTHORS

Marina Piccinelli, Navdeep Dahiya, Jonathon A. Nye, Russell Folks, C. David Cooke, Daya Manatunga, Doyeon Hwang, Jin Chul Paeng, Sang-Geon Cho, Joo Myung Lee, Hee-Seung Bom, Bon-Kwon Koo, Anthony Yezzi, Ernest V. Garcia

ABSTRACT

BackgroundPositron emission tomography (PET)-derived LV MBF quantification is usually measured in standard anatomical vascular territories potentially averaging flow from normally perfused tissue with those from areas with abnormal flow supply. Previously we reported on an image-based tool to noninvasively measure absolute myocardial blood flow at locations just below individual epicardial vessel to help guide revascularization. The aim of this work is to determine the robustness of vessel-specific flow measurements (MBFvs) extracted from the fusion of dynamic PET (dPET) with coronary computed tomography angiography (CCTA) myocardial segmentations, using flow measured from the fusion with CCTA manual segmentation as the reference standard.MethodsForty-three patients’ 13NH3 dPET, CCTA image datasets were used to measure the agreement of the MBFvs profiles after the fusion of dPET data with three CCTA anatomical models: (1) a manual model, (2) a fully automated segmented model and (3) a corrected model, where major inaccuracies in the automated segmentation were briefly edited. Pairwise accuracy of the normality/abnormality agreement of flow values along differently extracted vessels was determined by comparing, on a point-by-point basis, each vessel’s flow to corresponding vessels’ normal limits using Dice coefficients (DC) as the metric.ResultsOf the 43 patients CCTA fully automated mask models, 27 patients’ borders required manual correction before dPET/CCTA image fusion, but this editing process was brief (2–3 min) allowing a 100% success rate of extracting MBFvs in clinically acceptable times. In total, 124 vessels were analyzed after dPET fusion with the manual and corrected CCTA mask models yielding 2225 stress and 2122 rest flow values. Forty-seven vessels were analyzed after fusion with the fully automatic masks producing 840 stress and 825 rest flow samples. All DC coefficients computed globally or by territory were ≥ 0.93. No statistical differences were found in the normal/abnormal flow classifications between manual and corrected or manual and fully automated CCTA masks.ConclusionFully automated and manually corrected myocardial CCTA segmentation provides anatomical masks in clinically acceptable times for vessel-specific myocardial blood flow measurements using dynamic PET/CCTA image fusion which are not significantly different in flow accuracy and within clinically acceptable processing times compared to fully manually segmented CCTA myocardial masks. More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s41824-021-00122-1

DOI

http://dx.doi.org/10.1186/s41824-021-00122-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1145517713

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35165793


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd, NE, 30322, Atlanta, GA, USA", 
          "id": "http://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd, NE, 30322, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piccinelli", 
        "givenName": "Marina", 
        "id": "sg:person.01210425132.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210425132.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Georgia Institute of Technology, Atlanta, GA, USA", 
          "id": "http://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Department of Electrical Engineering, Georgia Institute of Technology, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dahiya", 
        "givenName": "Navdeep", 
        "id": "sg:person.01272012304.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272012304.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd, NE, 30322, Atlanta, GA, USA", 
          "id": "http://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd, NE, 30322, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nye", 
        "givenName": "Jonathon A.", 
        "id": "sg:person.01366751272.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366751272.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd, NE, 30322, Atlanta, GA, USA", 
          "id": "http://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd, NE, 30322, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Folks", 
        "givenName": "Russell", 
        "id": "sg:person.01226671730.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226671730.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd, NE, 30322, Atlanta, GA, USA", 
          "id": "http://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd, NE, 30322, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cooke", 
        "givenName": "C. David", 
        "id": "sg:person.01313621541.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313621541.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd, NE, 30322, Atlanta, GA, USA", 
          "id": "http://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd, NE, 30322, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manatunga", 
        "givenName": "Daya", 
        "id": "sg:person.01137670125.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137670125.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Doyeon", 
        "id": "sg:person.01004242037.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004242037.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paeng", 
        "givenName": "Jin Chul", 
        "id": "sg:person.01343511335.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samsung Medical Center, Heart Vascular Stroke Institute, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.414964.a", 
          "name": [
            "Samsung Medical Center, Heart Vascular Stroke Institute, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Sang-Geon", 
        "id": "sg:person.0607214542.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607214542.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Chonnam National University, Gwangju, Korea", 
          "id": "http://www.grid.ac/institutes/grid.14005.30", 
          "name": [
            "Department of Nuclear Medicine, Chonnam National University, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Joo Myung", 
        "id": "sg:person.01243434760.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243434760.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samsung Medical Center, Heart Vascular Stroke Institute, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.414964.a", 
          "name": [
            "Samsung Medical Center, Heart Vascular Stroke Institute, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bom", 
        "givenName": "Hee-Seung", 
        "id": "sg:person.01357201565.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357201565.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koo", 
        "givenName": "Bon-Kwon", 
        "id": "sg:person.01031167354.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031167354.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Georgia Institute of Technology, Atlanta, GA, USA", 
          "id": "http://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Department of Electrical Engineering, Georgia Institute of Technology, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yezzi", 
        "givenName": "Anthony", 
        "id": "sg:person.01203121731.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203121731.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd, NE, 30322, Atlanta, GA, USA", 
          "id": "http://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd, NE, 30322, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia", 
        "givenName": "Ernest V.", 
        "id": "sg:person.013331704622.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013331704622.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12350-017-0819-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083806109", 
          "https://doi.org/10.1007/s12350-017-0819-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-018-01472-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107910725", 
          "https://doi.org/10.1007/s12350-018-01472-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-020-02052-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124623059", 
          "https://doi.org/10.1007/s12350-020-02052-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-02-15", 
    "datePublishedReg": "2022-02-15", 
    "description": "BackgroundPositron emission tomography (PET)-derived LV MBF quantification is usually measured in standard anatomical vascular territories potentially averaging flow from normally perfused tissue with those from areas with abnormal flow supply. Previously we reported on an image-based tool to noninvasively measure absolute myocardial blood flow at locations just below individual epicardial vessel to help guide revascularization. The aim of this work is to determine the robustness of vessel-specific flow measurements (MBFvs) extracted from the fusion of dynamic PET (dPET) with coronary computed tomography angiography (CCTA) myocardial segmentations, using flow measured from the fusion with CCTA manual segmentation as the reference standard.MethodsForty-three patients\u2019 13NH3 dPET, CCTA image datasets were used to measure the agreement of the MBFvs profiles after the fusion of dPET data with three CCTA anatomical models: (1) a manual model, (2) a fully automated segmented model and (3) a corrected model, where major inaccuracies in the automated segmentation were briefly edited. Pairwise accuracy of the normality/abnormality agreement of flow values along differently extracted vessels was determined by comparing, on a point-by-point basis, each vessel\u2019s flow to corresponding vessels\u2019 normal limits using Dice coefficients (DC) as the metric.ResultsOf the 43 patients CCTA fully automated mask models, 27 patients\u2019 borders required manual correction before dPET/CCTA image fusion, but this editing process was brief (2\u20133\u00a0min) allowing a 100% success rate of extracting MBFvs in clinically acceptable times. In total, 124 vessels were analyzed after dPET fusion with the manual and corrected CCTA mask models yielding 2225 stress and 2122 rest flow values. Forty-seven vessels were analyzed after fusion with the fully automatic masks producing 840 stress and 825 rest flow samples. All DC coefficients computed globally or by territory were\u2009\u2265\u20090.93. No statistical differences were found in the normal/abnormal flow classifications between manual and corrected or manual and fully automated CCTA masks.ConclusionFully automated and manually corrected myocardial CCTA segmentation provides anatomical masks in clinically acceptable times for vessel-specific myocardial blood flow measurements using dynamic PET/CCTA image fusion which are not significantly different in flow accuracy and within clinically acceptable processing times compared to fully manually segmented CCTA myocardial masks.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s41824-021-00122-1", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7726407", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1300093", 
        "issn": [
          "2510-3636"
        ], 
        "name": "European Journal of Hybrid Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "image fusion", 
      "acceptable time", 
      "Dice coefficient", 
      "acceptable processing time", 
      "image-based tool", 
      "image datasets", 
      "DC coefficients", 
      "automatic masks", 
      "myocardial segmentation", 
      "flow classification", 
      "mask model", 
      "dynamic PET", 
      "manual segmentation", 
      "segmentation", 
      "pairwise accuracy", 
      "hybrid fusion", 
      "processing time", 
      "manual correction", 
      "flow accuracy", 
      "anatomical mask", 
      "editing process", 
      "anatomical models", 
      "dPET data", 
      "fusion", 
      "accuracy", 
      "manual model", 
      "dataset", 
      "mask", 
      "metrics", 
      "robustness", 
      "classification", 
      "segmented model", 
      "model", 
      "success rate", 
      "tool", 
      "point basis", 
      "manual", 
      "time", 
      "inaccuracy", 
      "work", 
      "major inaccuracies", 
      "standards", 
      "data", 
      "flow samples", 
      "location", 
      "process", 
      "point", 
      "flow", 
      "area", 
      "basis", 
      "values", 
      "reference standard", 
      "coefficient", 
      "border", 
      "correction", 
      "flow values", 
      "flow measurements", 
      "measurements", 
      "emission tomography", 
      "aim", 
      "quantification", 
      "rate", 
      "PET", 
      "supply", 
      "tomography", 
      "territory", 
      "vessels", 
      "agreement", 
      "profile", 
      "limit", 
      "CCTA", 
      "vessel flow", 
      "flow supply", 
      "samples", 
      "differences", 
      "stress", 
      "vascular territories", 
      "myocardial blood flow", 
      "blood flow measurements", 
      "blood flow", 
      "statistical difference", 
      "BackgroundPositron emission tomography", 
      "absolute myocardial blood flow", 
      "myocardial blood flow measurements", 
      "MBF quantification", 
      "epicardial vessels", 
      "normal limits", 
      "tissue", 
      "revascularization", 
      "ResultsOf", 
      "MBFV"
    ], 
    "name": "Clinically viable myocardial CCTA segmentation for measuring vessel-specific myocardial blood flow from dynamic PET/CCTA hybrid fusion", 
    "pagination": "4", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1145517713"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s41824-021-00122-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35165793"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s41824-021-00122-1", 
      "https://app.dimensions.ai/details/publication/pub.1145517713"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_935.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s41824-021-00122-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41824-021-00122-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41824-021-00122-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41824-021-00122-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41824-021-00122-1'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      21 PREDICATES      119 URIs      108 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s41824-021-00122-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N26880dfbdc7c40b985f03c59d422dabf
4 schema:citation sg:pub.10.1007/s12350-017-0819-x
5 sg:pub.10.1007/s12350-018-01472-3
6 sg:pub.10.1007/s12350-020-02052-0
7 schema:datePublished 2022-02-15
8 schema:datePublishedReg 2022-02-15
9 schema:description BackgroundPositron emission tomography (PET)-derived LV MBF quantification is usually measured in standard anatomical vascular territories potentially averaging flow from normally perfused tissue with those from areas with abnormal flow supply. Previously we reported on an image-based tool to noninvasively measure absolute myocardial blood flow at locations just below individual epicardial vessel to help guide revascularization. The aim of this work is to determine the robustness of vessel-specific flow measurements (MBFvs) extracted from the fusion of dynamic PET (dPET) with coronary computed tomography angiography (CCTA) myocardial segmentations, using flow measured from the fusion with CCTA manual segmentation as the reference standard.MethodsForty-three patients’ 13NH3 dPET, CCTA image datasets were used to measure the agreement of the MBFvs profiles after the fusion of dPET data with three CCTA anatomical models: (1) a manual model, (2) a fully automated segmented model and (3) a corrected model, where major inaccuracies in the automated segmentation were briefly edited. Pairwise accuracy of the normality/abnormality agreement of flow values along differently extracted vessels was determined by comparing, on a point-by-point basis, each vessel’s flow to corresponding vessels’ normal limits using Dice coefficients (DC) as the metric.ResultsOf the 43 patients CCTA fully automated mask models, 27 patients’ borders required manual correction before dPET/CCTA image fusion, but this editing process was brief (2–3 min) allowing a 100% success rate of extracting MBFvs in clinically acceptable times. In total, 124 vessels were analyzed after dPET fusion with the manual and corrected CCTA mask models yielding 2225 stress and 2122 rest flow values. Forty-seven vessels were analyzed after fusion with the fully automatic masks producing 840 stress and 825 rest flow samples. All DC coefficients computed globally or by territory were ≥ 0.93. No statistical differences were found in the normal/abnormal flow classifications between manual and corrected or manual and fully automated CCTA masks.ConclusionFully automated and manually corrected myocardial CCTA segmentation provides anatomical masks in clinically acceptable times for vessel-specific myocardial blood flow measurements using dynamic PET/CCTA image fusion which are not significantly different in flow accuracy and within clinically acceptable processing times compared to fully manually segmented CCTA myocardial masks.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N37c0299d04da4bcabadc8ef70d445820
13 N829d005f29f2497eb3c71e853a0b7f75
14 sg:journal.1300093
15 schema:keywords BackgroundPositron emission tomography
16 CCTA
17 DC coefficients
18 Dice coefficient
19 MBF quantification
20 MBFV
21 PET
22 ResultsOf
23 absolute myocardial blood flow
24 acceptable processing time
25 acceptable time
26 accuracy
27 agreement
28 aim
29 anatomical mask
30 anatomical models
31 area
32 automatic masks
33 basis
34 blood flow
35 blood flow measurements
36 border
37 classification
38 coefficient
39 correction
40 dPET data
41 data
42 dataset
43 differences
44 dynamic PET
45 editing process
46 emission tomography
47 epicardial vessels
48 flow
49 flow accuracy
50 flow classification
51 flow measurements
52 flow samples
53 flow supply
54 flow values
55 fusion
56 hybrid fusion
57 image datasets
58 image fusion
59 image-based tool
60 inaccuracy
61 limit
62 location
63 major inaccuracies
64 manual
65 manual correction
66 manual model
67 manual segmentation
68 mask
69 mask model
70 measurements
71 metrics
72 model
73 myocardial blood flow
74 myocardial blood flow measurements
75 myocardial segmentation
76 normal limits
77 pairwise accuracy
78 point
79 point basis
80 process
81 processing time
82 profile
83 quantification
84 rate
85 reference standard
86 revascularization
87 robustness
88 samples
89 segmentation
90 segmented model
91 standards
92 statistical difference
93 stress
94 success rate
95 supply
96 territory
97 time
98 tissue
99 tomography
100 tool
101 values
102 vascular territories
103 vessel flow
104 vessels
105 work
106 schema:name Clinically viable myocardial CCTA segmentation for measuring vessel-specific myocardial blood flow from dynamic PET/CCTA hybrid fusion
107 schema:pagination 4
108 schema:productId N40fe8a47c50b43309fd80559f0271ef6
109 N9dfa292306944552af74f383fdd3c1b9
110 Nd2670da7a39b4f1180b892f707d3ac89
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145517713
112 https://doi.org/10.1186/s41824-021-00122-1
113 schema:sdDatePublished 2022-09-02T16:08
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher Neb16ce38be40499689209a7904e83570
116 schema:url https://doi.org/10.1186/s41824-021-00122-1
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N068dc544311a403a88459affa2698699 rdf:first sg:person.01203121731.55
121 rdf:rest N128ba4bc582b47f8a3681917d4d3d58b
122 N070bd7e65268470fb091fed4e76c6ca6 rdf:first sg:person.01031167354.17
123 rdf:rest N068dc544311a403a88459affa2698699
124 N08d5608d52744a32af781efa14a5d501 rdf:first sg:person.01137670125.24
125 rdf:rest Nea1c2755c1be43ec9c14e145da6f9dc9
126 N128ba4bc582b47f8a3681917d4d3d58b rdf:first sg:person.013331704622.66
127 rdf:rest rdf:nil
128 N26356eb031ab4ab793dcb27c48bdde91 rdf:first sg:person.01243434760.90
129 rdf:rest N2db602f899d04ded89a8032684c814b1
130 N26880dfbdc7c40b985f03c59d422dabf rdf:first sg:person.01210425132.61
131 rdf:rest N308f2f1aeb364aa7924b5de9da0832ac
132 N26b667dff4444d108a107d861290f3c5 rdf:first sg:person.01226671730.78
133 rdf:rest N850e499ff0be488c9dcc0c20938469d5
134 N2db602f899d04ded89a8032684c814b1 rdf:first sg:person.01357201565.70
135 rdf:rest N070bd7e65268470fb091fed4e76c6ca6
136 N308f2f1aeb364aa7924b5de9da0832ac rdf:first sg:person.01272012304.94
137 rdf:rest N9d4e8dc7907a48a5aa4332542ee83129
138 N37c0299d04da4bcabadc8ef70d445820 schema:volumeNumber 6
139 rdf:type schema:PublicationVolume
140 N40fe8a47c50b43309fd80559f0271ef6 schema:name pubmed_id
141 schema:value 35165793
142 rdf:type schema:PropertyValue
143 N572e45de971347dfa0cd440a392442e9 rdf:first sg:person.01343511335.32
144 rdf:rest Nd4a6fe091a67431c8da8b707a125c11d
145 N829d005f29f2497eb3c71e853a0b7f75 schema:issueNumber 1
146 rdf:type schema:PublicationIssue
147 N850e499ff0be488c9dcc0c20938469d5 rdf:first sg:person.01313621541.36
148 rdf:rest N08d5608d52744a32af781efa14a5d501
149 N9d4e8dc7907a48a5aa4332542ee83129 rdf:first sg:person.01366751272.18
150 rdf:rest N26b667dff4444d108a107d861290f3c5
151 N9dfa292306944552af74f383fdd3c1b9 schema:name dimensions_id
152 schema:value pub.1145517713
153 rdf:type schema:PropertyValue
154 Nd2670da7a39b4f1180b892f707d3ac89 schema:name doi
155 schema:value 10.1186/s41824-021-00122-1
156 rdf:type schema:PropertyValue
157 Nd4a6fe091a67431c8da8b707a125c11d rdf:first sg:person.0607214542.02
158 rdf:rest N26356eb031ab4ab793dcb27c48bdde91
159 Nea1c2755c1be43ec9c14e145da6f9dc9 rdf:first sg:person.01004242037.73
160 rdf:rest N572e45de971347dfa0cd440a392442e9
161 Neb16ce38be40499689209a7904e83570 schema:name Springer Nature - SN SciGraph project
162 rdf:type schema:Organization
163 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
164 schema:name Information and Computing Sciences
165 rdf:type schema:DefinedTerm
166 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
167 schema:name Artificial Intelligence and Image Processing
168 rdf:type schema:DefinedTerm
169 sg:grant.7726407 http://pending.schema.org/fundedItem sg:pub.10.1186/s41824-021-00122-1
170 rdf:type schema:MonetaryGrant
171 sg:journal.1300093 schema:issn 2510-3636
172 schema:name European Journal of Hybrid Imaging
173 schema:publisher Springer Nature
174 rdf:type schema:Periodical
175 sg:person.01004242037.73 schema:affiliation grid-institutes:grid.412484.f
176 schema:familyName Hwang
177 schema:givenName Doyeon
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004242037.73
179 rdf:type schema:Person
180 sg:person.01031167354.17 schema:affiliation grid-institutes:grid.412484.f
181 schema:familyName Koo
182 schema:givenName Bon-Kwon
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031167354.17
184 rdf:type schema:Person
185 sg:person.01137670125.24 schema:affiliation grid-institutes:grid.189967.8
186 schema:familyName Manatunga
187 schema:givenName Daya
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137670125.24
189 rdf:type schema:Person
190 sg:person.01203121731.55 schema:affiliation grid-institutes:grid.213917.f
191 schema:familyName Yezzi
192 schema:givenName Anthony
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203121731.55
194 rdf:type schema:Person
195 sg:person.01210425132.61 schema:affiliation grid-institutes:grid.189967.8
196 schema:familyName Piccinelli
197 schema:givenName Marina
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210425132.61
199 rdf:type schema:Person
200 sg:person.01226671730.78 schema:affiliation grid-institutes:grid.189967.8
201 schema:familyName Folks
202 schema:givenName Russell
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226671730.78
204 rdf:type schema:Person
205 sg:person.01243434760.90 schema:affiliation grid-institutes:grid.14005.30
206 schema:familyName Lee
207 schema:givenName Joo Myung
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243434760.90
209 rdf:type schema:Person
210 sg:person.01272012304.94 schema:affiliation grid-institutes:grid.213917.f
211 schema:familyName Dahiya
212 schema:givenName Navdeep
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272012304.94
214 rdf:type schema:Person
215 sg:person.01313621541.36 schema:affiliation grid-institutes:grid.189967.8
216 schema:familyName Cooke
217 schema:givenName C. David
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313621541.36
219 rdf:type schema:Person
220 sg:person.013331704622.66 schema:affiliation grid-institutes:grid.189967.8
221 schema:familyName Garcia
222 schema:givenName Ernest V.
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013331704622.66
224 rdf:type schema:Person
225 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.412484.f
226 schema:familyName Paeng
227 schema:givenName Jin Chul
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
229 rdf:type schema:Person
230 sg:person.01357201565.70 schema:affiliation grid-institutes:grid.414964.a
231 schema:familyName Bom
232 schema:givenName Hee-Seung
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357201565.70
234 rdf:type schema:Person
235 sg:person.01366751272.18 schema:affiliation grid-institutes:grid.189967.8
236 schema:familyName Nye
237 schema:givenName Jonathon A.
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366751272.18
239 rdf:type schema:Person
240 sg:person.0607214542.02 schema:affiliation grid-institutes:grid.414964.a
241 schema:familyName Cho
242 schema:givenName Sang-Geon
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607214542.02
244 rdf:type schema:Person
245 sg:pub.10.1007/s12350-017-0819-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1083806109
246 https://doi.org/10.1007/s12350-017-0819-x
247 rdf:type schema:CreativeWork
248 sg:pub.10.1007/s12350-018-01472-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107910725
249 https://doi.org/10.1007/s12350-018-01472-3
250 rdf:type schema:CreativeWork
251 sg:pub.10.1007/s12350-020-02052-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124623059
252 https://doi.org/10.1007/s12350-020-02052-0
253 rdf:type schema:CreativeWork
254 grid-institutes:grid.14005.30 schema:alternateName Department of Nuclear Medicine, Chonnam National University, Gwangju, Korea
255 schema:name Department of Nuclear Medicine, Chonnam National University, Gwangju, Korea
256 rdf:type schema:Organization
257 grid-institutes:grid.189967.8 schema:alternateName Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd, NE, 30322, Atlanta, GA, USA
258 schema:name Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Rd, NE, 30322, Atlanta, GA, USA
259 rdf:type schema:Organization
260 grid-institutes:grid.213917.f schema:alternateName Department of Electrical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
261 schema:name Department of Electrical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
262 rdf:type schema:Organization
263 grid-institutes:grid.412484.f schema:alternateName Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
264 Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
265 schema:name Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
266 Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
267 rdf:type schema:Organization
268 grid-institutes:grid.414964.a schema:alternateName Samsung Medical Center, Heart Vascular Stroke Institute, Seoul, Korea
269 schema:name Samsung Medical Center, Heart Vascular Stroke Institute, Seoul, Korea
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...