The prognostic value of preoperative FDG-PET/CT metabolic parameters in cervical cancer patients View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Vikram Rao Bollineni, Sigmund Ytre-Hauge, Ankush Gulati, Mari K. Halle, Kathrine Woie, Øyvind Salvesen, Jone Trovik, Camilla Krakstad, Ingfrid S. Haldorsen

ABSTRACT

To explore quantitative metabolic and microstructural primary tumour parameters at pretreatment FDG-PET/CT and diffusion-weighted-magnetic resonance imaging (DW-MRI) in relation to clinical FIGO stage and outcome in uterine cervical cancer patients. Fifty three patients with histopathologically verified cervical carcinoma with clinical FIGO stage IB1-IVA were subjected to FDG-PET/CT and subgroup also DW-MRI (n = 30) prior to treatment. Measurements from the FDG-PET/CT comprised lesion maximum-standardised uptake value (SUVmax), total lesion glycolysis (TLG) and metabolic tumour volume (MTV). In MR images longest-tumour-diameter (MRI-LD), tumour volume (MRI-TV) and mean tumour apparent-diffusion-coefficient (ADCmean) value were measured. FDG-PET/CT parameters were explored in relation to clinical prognostic factors at diagnosis and progression/recurrence free survival, and compared with the MRI parameters. The metabolic tumour parameters TLG and MTV were highly positively correlated to MRI-LD and MRI-TV (rs = 072–0.82; p < 0.001 for all), whereas tumour SUVmax was only moderately correlated to MRI-LD (rs = 0.29; p ≤ 0.04) and MRI-TV (rs = 0.36; p ≤ 0.01). High tumour TLG, MTV, MRI-LD and MRI-TV predicted advanced FIGO stage, whereas high tumour SUVmax did not. No significant correlations were observed between tumour ADCmean and the other imaging parameters or FIGO stage. High primary tumour MTV (≥56.7 mL), high TLG (≥412 g) and large MRI-TV (≥36 mL) predicted reduced progression/recurrence free survival yielding corresponding hazard ratios [HR] of 7.8 (P = 0.002), 6.9 (P = 0.004) and 4.6 (P = 0.022), respectively. Also advanced FIGO stage (≥IIIA) was associated with reduced progression/recurrence free survival with HR of 6.9 (P = 0.004). In multivariable analysis, advanced FIGO stage (≥IIIA) and high MTV (≥56.7 mL) were independent prognostic factors with adjusted HRs of 5.5 (P = 0.020) and 7.8 (P = 0.025), respectively. High MTV at pre-treatment FDG-PET/CT and high clinical FIGO stage independently predict reduced progression/recurrence free survival in cervical cancer patients. More... »

PAGES

24

References to SciGraph publications

  • 2013-10. Do clinical characteristics and metabolic markers detected on positron emission tomography/computerized tomography associate with persistent disease in patients with in-operable cervical cancer? in ANNALS OF NUCLEAR MEDICINE
  • 2008-05. Diffusion-weighted MRI in cervical cancer in EUROPEAN RADIOLOGY
  • 2017-12. Concordance of FDG PET/CT metabolic tumour volume versus DW-MRI functional tumour volume with T2-weighted anatomical tumour volume in cervical cancer in BMC CANCER
  • 2016-12. Utility of SUVmax on 18 F-FDG PET in detecting cervical nodal metastases in CANCER IMAGING
  • 2015-08. PET/MRI and PET/CT in advanced gynaecological tumours: initial experience and comparison in EUROPEAN RADIOLOGY
  • 2014-08. Whole-body [18F]FDG PET/MRI vs. PET/CT in the assessment of bone lesions in oncological patients: initial results in EUROPEAN RADIOLOGY
  • 2018-05. Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-02. Correlation of apparent diffusion coefficients measured by 3T diffusion-weighted MRI and SUV from FDG PET/CT in primary cervical cancer in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2018-01. Comparison of 18F-FDG PET/MRI and MRI for pre-therapeutic tumor staging of patients with primary cancer of the uterine cervix in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-05. Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology in EUROPEAN RADIOLOGY
  • 2015-02. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2010-02. Diagnostic performance of fluorodeoxyglucose positron emission tomography/magnetic resonance imaging fusion images of gynecological malignant tumors: comparison with positron emission tomography/computed tomography in JAPANESE JOURNAL OF RADIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s41824-018-0042-2

    DOI

    http://dx.doi.org/10.1186/s41824-018-0042-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106998946


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ziekenhuis Oost-Limburg", 
              "id": "https://www.grid.ac/institutes/grid.470040.7", 
              "name": [
                "Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway", 
                "Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway", 
                "Department of Radiology, Ziekenhuis Oost-Limburg, Campus St-Jan, Genk, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bollineni", 
            "givenName": "Vikram Rao", 
            "id": "sg:person.01273676067.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273676067.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bergen", 
              "id": "https://www.grid.ac/institutes/grid.7914.b", 
              "name": [
                "Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway", 
                "Department of Clinical Medicine, University of Bergen, Bergen, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ytre-Hauge", 
            "givenName": "Sigmund", 
            "id": "sg:person.0757032772.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757032772.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bergen", 
              "id": "https://www.grid.ac/institutes/grid.7914.b", 
              "name": [
                "Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway", 
                "Department of Clinical Medicine, University of Bergen, Bergen, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gulati", 
            "givenName": "Ankush", 
            "id": "sg:person.014461236371.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014461236371.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bergen", 
              "id": "https://www.grid.ac/institutes/grid.7914.b", 
              "name": [
                "Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway", 
                "Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Halle", 
            "givenName": "Mari K.", 
            "id": "sg:person.01341043101.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341043101.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Haukeland University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.412008.f", 
              "name": [
                "Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Woie", 
            "givenName": "Kathrine", 
            "id": "sg:person.01362043676.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362043676.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Norwegian University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.5947.f", 
              "name": [
                "Unit for Applied Clinical Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Salvesen", 
            "givenName": "\u00d8yvind", 
            "id": "sg:person.01225071511.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225071511.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bergen", 
              "id": "https://www.grid.ac/institutes/grid.7914.b", 
              "name": [
                "Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway", 
                "Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trovik", 
            "givenName": "Jone", 
            "id": "sg:person.01125176354.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125176354.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bergen", 
              "id": "https://www.grid.ac/institutes/grid.7914.b", 
              "name": [
                "Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway", 
                "Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krakstad", 
            "givenName": "Camilla", 
            "id": "sg:person.01240205213.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240205213.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bergen", 
              "id": "https://www.grid.ac/institutes/grid.7914.b", 
              "name": [
                "Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway", 
                "Department of Clinical Medicine, University of Bergen, Bergen, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haldorsen", 
            "givenName": "Ingfrid S.", 
            "id": "sg:person.01327350671.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327350671.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00330-007-0843-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003302707", 
              "https://doi.org/10.1007/s00330-007-0843-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-007-0843-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003302707", 
              "https://doi.org/10.1007/s00330-007-0843-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-008-0936-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005425079", 
              "https://doi.org/10.1007/s00259-008-0936-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-008-0936-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005425079", 
              "https://doi.org/10.1007/s00259-008-0936-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-015-3657-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005549964", 
              "https://doi.org/10.1007/s00330-015-3657-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-015-3657-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005549964", 
              "https://doi.org/10.1007/s00330-015-3657-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2961-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008918527", 
              "https://doi.org/10.1007/s00259-014-2961-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2961-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008918527", 
              "https://doi.org/10.1007/s00259-014-2961-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40644-016-0095-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011033379", 
              "https://doi.org/10.1186/s40644-016-0095-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40644-016-0095-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011033379", 
              "https://doi.org/10.1186/s40644-016-0095-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40644-016-0095-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011033379", 
              "https://doi.org/10.1186/s40644-016-0095-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/igc.0b013e318260a905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015379966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/igc.0b013e318260a905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015379966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/igc.0b013e318260a905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015379966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11604-009-0387-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015813066", 
              "https://doi.org/10.1007/s11604-009-0387-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11604-009-0387-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015813066", 
              "https://doi.org/10.1007/s11604-009-0387-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0141684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020835073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/md.0000000000002992", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021706114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/md.0000000000002992", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021706114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-013-0745-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022977047", 
              "https://doi.org/10.1007/s12149-013-0745-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0096751", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023874495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0137743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024474282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ygyno.2012.07.123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027657787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ygyno.2012.06.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028827144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.13130420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030727652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-014-3229-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032589796", 
              "https://doi.org/10.1007/s00330-014-3229-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.clinimag.2014.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036657619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-010-1998-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046877360", 
              "https://doi.org/10.1007/s00330-010-1998-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejrad.2014.03.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046933379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ygyno.2010.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048634508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/0284186x.2010.500305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048752266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2381041799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051070404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ctrv.2015.03.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051140983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mnm.0000000000000198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052782842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mnm.0000000000000198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052782842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2214/ajr.05.0263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069297487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2214/ajr.12.9830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069302999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074715786", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-017-3809-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091326575", 
              "https://doi.org/10.1007/s00259-017-3809-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-017-3809-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091326575", 
              "https://doi.org/10.1007/s00259-017-3809-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12885-017-3800-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099695927", 
              "https://doi.org/10.1186/s12885-017-3800-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-017-3898-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099696659", 
              "https://doi.org/10.1007/s00259-017-3898-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "To explore quantitative metabolic and microstructural primary tumour parameters at pretreatment FDG-PET/CT and diffusion-weighted-magnetic resonance imaging (DW-MRI) in relation to clinical FIGO stage and outcome in uterine cervical cancer patients. Fifty three patients with histopathologically verified cervical carcinoma with clinical FIGO stage IB1-IVA were subjected to FDG-PET/CT and subgroup also DW-MRI (n = 30) prior to treatment. Measurements from the FDG-PET/CT comprised lesion maximum-standardised uptake value (SUVmax), total lesion glycolysis (TLG) and metabolic tumour volume (MTV). In MR images longest-tumour-diameter (MRI-LD), tumour volume (MRI-TV) and mean tumour apparent-diffusion-coefficient (ADCmean) value were measured. FDG-PET/CT parameters were explored in relation to clinical prognostic factors at diagnosis and progression/recurrence free survival, and compared with the MRI parameters. The metabolic tumour parameters TLG and MTV were highly positively correlated to MRI-LD and MRI-TV (rs = 072\u20130.82; p < 0.001 for all), whereas tumour SUVmax was only moderately correlated to MRI-LD (rs = 0.29; p \u2264 0.04) and MRI-TV (rs = 0.36; p \u2264 0.01). High tumour TLG, MTV, MRI-LD and MRI-TV predicted advanced FIGO stage, whereas high tumour SUVmax did not. No significant correlations were observed between tumour ADCmean and the other imaging parameters or FIGO stage. High primary tumour MTV (\u226556.7 mL), high TLG (\u2265412 g) and large MRI-TV (\u226536 mL) predicted reduced progression/recurrence free survival yielding corresponding hazard ratios [HR] of 7.8 (P = 0.002), 6.9 (P = 0.004) and 4.6 (P = 0.022), respectively. Also advanced FIGO stage (\u2265IIIA) was associated with reduced progression/recurrence free survival with HR of 6.9 (P = 0.004). In multivariable analysis, advanced FIGO stage (\u2265IIIA) and high MTV (\u226556.7 mL) were independent prognostic factors with adjusted HRs of 5.5 (P = 0.020) and 7.8 (P = 0.025), respectively. High MTV at pre-treatment FDG-PET/CT and high clinical FIGO stage independently predict reduced progression/recurrence free survival in cervical cancer patients.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s41824-018-0042-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1300093", 
            "issn": [
              "2510-3636"
            ], 
            "name": "European Journal of Hybrid Imaging", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "The prognostic value of preoperative FDG-PET/CT metabolic parameters in cervical cancer patients", 
        "pagination": "24", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ea3a0932ddf88dc37cb486756d398146f925bd474e9980946aee4a9144c48d28"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s41824-018-0042-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106998946"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s41824-018-0042-2", 
          "https://app.dimensions.ai/details/publication/pub.1106998946"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000291_0000000291/records_105786_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs41824-018-0042-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41824-018-0042-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41824-018-0042-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41824-018-0042-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41824-018-0042-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    231 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s41824-018-0042-2 schema:about anzsrc-for:11
    2 anzsrc-for:1112
    3 schema:author N883108bd7ed04fd6b239660970c618ff
    4 schema:citation sg:pub.10.1007/s00259-008-0936-5
    5 sg:pub.10.1007/s00259-014-2961-x
    6 sg:pub.10.1007/s00259-017-3809-y
    7 sg:pub.10.1007/s00259-017-3898-7
    8 sg:pub.10.1007/s00330-007-0843-3
    9 sg:pub.10.1007/s00330-010-1998-x
    10 sg:pub.10.1007/s00330-014-3229-3
    11 sg:pub.10.1007/s00330-015-3657-8
    12 sg:pub.10.1007/s11604-009-0387-3
    13 sg:pub.10.1007/s12149-013-0745-1
    14 sg:pub.10.1186/s12885-017-3800-9
    15 sg:pub.10.1186/s40644-016-0095-z
    16 https://app.dimensions.ai/details/publication/pub.1074715786
    17 https://doi.org/10.1016/j.clinimag.2014.02.006
    18 https://doi.org/10.1016/j.ctrv.2015.03.010
    19 https://doi.org/10.1016/j.ejrad.2014.03.024
    20 https://doi.org/10.1016/j.ygyno.2010.11.002
    21 https://doi.org/10.1016/j.ygyno.2012.06.041
    22 https://doi.org/10.1016/j.ygyno.2012.07.123
    23 https://doi.org/10.1097/igc.0b013e318260a905
    24 https://doi.org/10.1097/md.0000000000002992
    25 https://doi.org/10.1097/mnm.0000000000000198
    26 https://doi.org/10.1148/radiol.13130420
    27 https://doi.org/10.1148/radiol.2381041799
    28 https://doi.org/10.1371/journal.pone.0096751
    29 https://doi.org/10.1371/journal.pone.0137743
    30 https://doi.org/10.1371/journal.pone.0141684
    31 https://doi.org/10.2214/ajr.05.0263
    32 https://doi.org/10.2214/ajr.12.9830
    33 https://doi.org/10.3109/0284186x.2010.500305
    34 schema:datePublished 2018-12
    35 schema:datePublishedReg 2018-12-01
    36 schema:description To explore quantitative metabolic and microstructural primary tumour parameters at pretreatment FDG-PET/CT and diffusion-weighted-magnetic resonance imaging (DW-MRI) in relation to clinical FIGO stage and outcome in uterine cervical cancer patients. Fifty three patients with histopathologically verified cervical carcinoma with clinical FIGO stage IB1-IVA were subjected to FDG-PET/CT and subgroup also DW-MRI (n = 30) prior to treatment. Measurements from the FDG-PET/CT comprised lesion maximum-standardised uptake value (SUVmax), total lesion glycolysis (TLG) and metabolic tumour volume (MTV). In MR images longest-tumour-diameter (MRI-LD), tumour volume (MRI-TV) and mean tumour apparent-diffusion-coefficient (ADCmean) value were measured. FDG-PET/CT parameters were explored in relation to clinical prognostic factors at diagnosis and progression/recurrence free survival, and compared with the MRI parameters. The metabolic tumour parameters TLG and MTV were highly positively correlated to MRI-LD and MRI-TV (rs = 072–0.82; p < 0.001 for all), whereas tumour SUVmax was only moderately correlated to MRI-LD (rs = 0.29; p ≤ 0.04) and MRI-TV (rs = 0.36; p ≤ 0.01). High tumour TLG, MTV, MRI-LD and MRI-TV predicted advanced FIGO stage, whereas high tumour SUVmax did not. No significant correlations were observed between tumour ADCmean and the other imaging parameters or FIGO stage. High primary tumour MTV (≥56.7 mL), high TLG (≥412 g) and large MRI-TV (≥36 mL) predicted reduced progression/recurrence free survival yielding corresponding hazard ratios [HR] of 7.8 (P = 0.002), 6.9 (P = 0.004) and 4.6 (P = 0.022), respectively. Also advanced FIGO stage (≥IIIA) was associated with reduced progression/recurrence free survival with HR of 6.9 (P = 0.004). In multivariable analysis, advanced FIGO stage (≥IIIA) and high MTV (≥56.7 mL) were independent prognostic factors with adjusted HRs of 5.5 (P = 0.020) and 7.8 (P = 0.025), respectively. High MTV at pre-treatment FDG-PET/CT and high clinical FIGO stage independently predict reduced progression/recurrence free survival in cervical cancer patients.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N1674c89d78434f41aef3ca1cf863004b
    41 N62a7c7be66764effb74d8103c58548cc
    42 sg:journal.1300093
    43 schema:name The prognostic value of preoperative FDG-PET/CT metabolic parameters in cervical cancer patients
    44 schema:pagination 24
    45 schema:productId Na9be2e5740ac4285b95faf298dd7a597
    46 Nb8ef5a0aadeb47cda8e1b4639aa3d355
    47 Ne5fa6b96a5a44676adc09892757e7445
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106998946
    49 https://doi.org/10.1186/s41824-018-0042-2
    50 schema:sdDatePublished 2019-04-11T08:21
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N77240a2a6f3a40748e9caf69d2422787
    53 schema:url https://link.springer.com/10.1186%2Fs41824-018-0042-2
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N0e66bf6357874893bb5eef04fda8480a rdf:first sg:person.01341043101.72
    58 rdf:rest Nbcb29c056e2e4af590603b0d04856288
    59 N1674c89d78434f41aef3ca1cf863004b schema:issueNumber 1
    60 rdf:type schema:PublicationIssue
    61 N2e437018b2f944ebb1e7814c3d301d43 rdf:first sg:person.0757032772.86
    62 rdf:rest N73ce7a24c600406b8df9a3b17587def8
    63 N458578d041884d1ba217a4c12b395a41 rdf:first sg:person.01240205213.14
    64 rdf:rest Ne768abd1cf6f4056ac7c7e3d38b6cec7
    65 N62a7c7be66764effb74d8103c58548cc schema:volumeNumber 2
    66 rdf:type schema:PublicationVolume
    67 N716008b3be994042917995ebc58cbc3d rdf:first sg:person.01125176354.64
    68 rdf:rest N458578d041884d1ba217a4c12b395a41
    69 N73ce7a24c600406b8df9a3b17587def8 rdf:first sg:person.014461236371.17
    70 rdf:rest N0e66bf6357874893bb5eef04fda8480a
    71 N77240a2a6f3a40748e9caf69d2422787 schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 N883108bd7ed04fd6b239660970c618ff rdf:first sg:person.01273676067.54
    74 rdf:rest N2e437018b2f944ebb1e7814c3d301d43
    75 Na9be2e5740ac4285b95faf298dd7a597 schema:name doi
    76 schema:value 10.1186/s41824-018-0042-2
    77 rdf:type schema:PropertyValue
    78 Nb8ef5a0aadeb47cda8e1b4639aa3d355 schema:name readcube_id
    79 schema:value ea3a0932ddf88dc37cb486756d398146f925bd474e9980946aee4a9144c48d28
    80 rdf:type schema:PropertyValue
    81 Nbcb29c056e2e4af590603b0d04856288 rdf:first sg:person.01362043676.29
    82 rdf:rest Nc01b3ee27d5241b288a832868afa17b1
    83 Nc01b3ee27d5241b288a832868afa17b1 rdf:first sg:person.01225071511.13
    84 rdf:rest N716008b3be994042917995ebc58cbc3d
    85 Ne5fa6b96a5a44676adc09892757e7445 schema:name dimensions_id
    86 schema:value pub.1106998946
    87 rdf:type schema:PropertyValue
    88 Ne768abd1cf6f4056ac7c7e3d38b6cec7 rdf:first sg:person.01327350671.53
    89 rdf:rest rdf:nil
    90 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Medical and Health Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Oncology and Carcinogenesis
    95 rdf:type schema:DefinedTerm
    96 sg:journal.1300093 schema:issn 2510-3636
    97 schema:name European Journal of Hybrid Imaging
    98 rdf:type schema:Periodical
    99 sg:person.01125176354.64 schema:affiliation https://www.grid.ac/institutes/grid.7914.b
    100 schema:familyName Trovik
    101 schema:givenName Jone
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125176354.64
    103 rdf:type schema:Person
    104 sg:person.01225071511.13 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
    105 schema:familyName Salvesen
    106 schema:givenName Øyvind
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225071511.13
    108 rdf:type schema:Person
    109 sg:person.01240205213.14 schema:affiliation https://www.grid.ac/institutes/grid.7914.b
    110 schema:familyName Krakstad
    111 schema:givenName Camilla
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240205213.14
    113 rdf:type schema:Person
    114 sg:person.01273676067.54 schema:affiliation https://www.grid.ac/institutes/grid.470040.7
    115 schema:familyName Bollineni
    116 schema:givenName Vikram Rao
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273676067.54
    118 rdf:type schema:Person
    119 sg:person.01327350671.53 schema:affiliation https://www.grid.ac/institutes/grid.7914.b
    120 schema:familyName Haldorsen
    121 schema:givenName Ingfrid S.
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327350671.53
    123 rdf:type schema:Person
    124 sg:person.01341043101.72 schema:affiliation https://www.grid.ac/institutes/grid.7914.b
    125 schema:familyName Halle
    126 schema:givenName Mari K.
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341043101.72
    128 rdf:type schema:Person
    129 sg:person.01362043676.29 schema:affiliation https://www.grid.ac/institutes/grid.412008.f
    130 schema:familyName Woie
    131 schema:givenName Kathrine
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362043676.29
    133 rdf:type schema:Person
    134 sg:person.014461236371.17 schema:affiliation https://www.grid.ac/institutes/grid.7914.b
    135 schema:familyName Gulati
    136 schema:givenName Ankush
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014461236371.17
    138 rdf:type schema:Person
    139 sg:person.0757032772.86 schema:affiliation https://www.grid.ac/institutes/grid.7914.b
    140 schema:familyName Ytre-Hauge
    141 schema:givenName Sigmund
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757032772.86
    143 rdf:type schema:Person
    144 sg:pub.10.1007/s00259-008-0936-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005425079
    145 https://doi.org/10.1007/s00259-008-0936-5
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s00259-014-2961-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008918527
    148 https://doi.org/10.1007/s00259-014-2961-x
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s00259-017-3809-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1091326575
    151 https://doi.org/10.1007/s00259-017-3809-y
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s00259-017-3898-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099696659
    154 https://doi.org/10.1007/s00259-017-3898-7
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s00330-007-0843-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003302707
    157 https://doi.org/10.1007/s00330-007-0843-3
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s00330-010-1998-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046877360
    160 https://doi.org/10.1007/s00330-010-1998-x
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s00330-014-3229-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032589796
    163 https://doi.org/10.1007/s00330-014-3229-3
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00330-015-3657-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005549964
    166 https://doi.org/10.1007/s00330-015-3657-8
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s11604-009-0387-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015813066
    169 https://doi.org/10.1007/s11604-009-0387-3
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s12149-013-0745-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022977047
    172 https://doi.org/10.1007/s12149-013-0745-1
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1186/s12885-017-3800-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099695927
    175 https://doi.org/10.1186/s12885-017-3800-9
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1186/s40644-016-0095-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1011033379
    178 https://doi.org/10.1186/s40644-016-0095-z
    179 rdf:type schema:CreativeWork
    180 https://app.dimensions.ai/details/publication/pub.1074715786 schema:CreativeWork
    181 https://doi.org/10.1016/j.clinimag.2014.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036657619
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.ctrv.2015.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051140983
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/j.ejrad.2014.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046933379
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/j.ygyno.2010.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048634508
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/j.ygyno.2012.06.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028827144
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/j.ygyno.2012.07.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027657787
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1097/igc.0b013e318260a905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015379966
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1097/md.0000000000002992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021706114
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1097/mnm.0000000000000198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052782842
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1148/radiol.13130420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030727652
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1148/radiol.2381041799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051070404
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1371/journal.pone.0096751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023874495
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1371/journal.pone.0137743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024474282
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1371/journal.pone.0141684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020835073
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.2214/ajr.05.0263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069297487
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.2214/ajr.12.9830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302999
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.3109/0284186x.2010.500305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048752266
    214 rdf:type schema:CreativeWork
    215 https://www.grid.ac/institutes/grid.412008.f schema:alternateName Haukeland University Hospital
    216 schema:name Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
    217 rdf:type schema:Organization
    218 https://www.grid.ac/institutes/grid.470040.7 schema:alternateName Ziekenhuis Oost-Limburg
    219 schema:name Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
    220 Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
    221 Department of Radiology, Ziekenhuis Oost-Limburg, Campus St-Jan, Genk, Belgium
    222 rdf:type schema:Organization
    223 https://www.grid.ac/institutes/grid.5947.f schema:alternateName Norwegian University of Science and Technology
    224 schema:name Unit for Applied Clinical Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    225 rdf:type schema:Organization
    226 https://www.grid.ac/institutes/grid.7914.b schema:alternateName University of Bergen
    227 schema:name Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
    228 Department of Clinical Medicine, University of Bergen, Bergen, Norway
    229 Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
    230 Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
    231 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...