Validation of two accelerated 4D flow MRI sequences at 3 T: a phantom study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Sebastian Ebel, Lisa Hübner, Benjamin Köhler, Siegfried Kropf, Bernhard Preim, Bernd Jung, Matthias Grothoff, Matthias Gutberlet

ABSTRACT

BACKGROUND: Four-dimensional (4D) flow magnetic resonance imaging (MRI) sequences with advanced parallel imaging have the potential to reduce scan time with equivalent image quality and accuracy compared with standard two-dimensional (2D) flow MRI. We compared 4D flow to standard 2D flow sequences using a constant and pulsatile flow phantom at 3 T. METHODS: Two accelerated 4D flow sequences (GRAPPA2 and k-t-GRAPPA5) were evaluated regarding the concordance of flow volumes, flow velocities, and reproducibility as well as dependency on measuring plane and velocity encoding (Venc). The calculated flow volumes and peak velocities of the phantom were used as reference standard. Flow analysis was performed using the custom-made software "Bloodline". RESULTS: No significant differences in flow volume were found between the 2D, both 4D flow MRI sequences, and the pump reference (p = 0.994) or flow velocities (p = 0.998) in continuous and pulsatile flow. An excellent correlation (R = 0.99-1.0) with a reference standard and excellent reproducibility of measurements (R = 0.99) was achieved for all sequences. A Venc overestimated by up to two times had no impact on flow measurements. However, misaligned measuring planes led to an increasing underestimation of flow volume and mean velocity in 2D flow accuracy, while both 4D flow measurements were not affected. Scan time was significantly shorter for k-t-GRAPPA5 (1:54 ± 0:01 min, mean ± standard deviation) compared to GRAPPA2 (3:56 ± 0:02 min) (p = 0.002). CONCLUSIONS: Both 4D flow sequences demonstrated equal agreement with 2D flow measurements, without impact of Venc overestimation and plane misalignment. The highly accelerated k-t-GRAPPA5 sequence yielded results similar to those of GRAPPA2. More... »

PAGES

10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s41747-019-0089-2

DOI

http://dx.doi.org/10.1186/s41747-019-0089-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112389448

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30806827


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Leipzig University", 
          "id": "https://www.grid.ac/institutes/grid.9647.c", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University of Leipzig \u2013 Heart Centre, Leipzig Str\u00fcmpellstrasse 39, 04289, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ebel", 
        "givenName": "Sebastian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leipzig University", 
          "id": "https://www.grid.ac/institutes/grid.9647.c", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University of Leipzig \u2013 Heart Centre, Leipzig Str\u00fcmpellstrasse 39, 04289, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00fcbner", 
        "givenName": "Lisa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Otto-von-Guericke University Magdeburg", 
          "id": "https://www.grid.ac/institutes/grid.5807.a", 
          "name": [
            "Department of Simulations and Graphics, University of Magdeburg, Magdeburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00f6hler", 
        "givenName": "Benjamin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Otto-von-Guericke University Magdeburg", 
          "id": "https://www.grid.ac/institutes/grid.5807.a", 
          "name": [
            "Institute for Biometrics and Medical Informatics, University of Magdeburg, Magdeburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kropf", 
        "givenName": "Siegfried", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Otto-von-Guericke University Magdeburg", 
          "id": "https://www.grid.ac/institutes/grid.5807.a", 
          "name": [
            "Department of Simulations and Graphics, University of Magdeburg, Magdeburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Preim", 
        "givenName": "Bernhard", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bern", 
          "id": "https://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Department of Diagnostic, Interventional and Paediatric Radiology, University of Bern, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "Bernd", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leipzig University", 
          "id": "https://www.grid.ac/institutes/grid.9647.c", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University of Leipzig \u2013 Heart Centre, Leipzig Str\u00fcmpellstrasse 39, 04289, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grothoff", 
        "givenName": "Matthias", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leipzig University", 
          "id": "https://www.grid.ac/institutes/grid.9647.c", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University of Leipzig \u2013 Heart Centre, Leipzig Str\u00fcmpellstrasse 39, 04289, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gutberlet", 
        "givenName": "Matthias", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0070343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001578156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002596483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910290611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003412079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cgf.12803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006333698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-199302000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008568997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-199302000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008568997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2012.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009659824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012449961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013588487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018512831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-2829-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018583886", 
          "https://doi.org/10.1007/s00330-005-2829-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-2829-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018583886", 
          "https://doi.org/10.1007/s00330-005-2829-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000195840.50230.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018699244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000195840.50230.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018699244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000195840.50230.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018699244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022485192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022485192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-015-0174-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027175700", 
          "https://doi.org/10.1186/s12968-015-0174-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-015-0174-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027175700", 
          "https://doi.org/10.1186/s12968-015-0174-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-014-0456-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027391632", 
          "https://doi.org/10.1007/s10334-014-0456-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027836464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031507243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031507243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-49465-3_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033744079", 
          "https://doi.org/10.1007/978-3-662-49465-3_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-014-0449-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038752726", 
          "https://doi.org/10.1007/s10334-014-0449-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.597729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040630007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040921552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041194011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-012-1103-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041709700", 
          "https://doi.org/10.1007/s00234-012-1103-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiographics.22.3.g02ma11651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044900210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-016-0319-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046329822", 
          "https://doi.org/10.1186/s12968-016-0319-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-016-0319-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046329822", 
          "https://doi.org/10.1186/s12968-016-0319-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2011.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046425644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0026-2862(74)90043-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048639553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.10272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050441104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053183771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2013.189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061814057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077034597", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085138545"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Four-dimensional (4D) flow magnetic resonance imaging (MRI) sequences with advanced parallel imaging have the potential to reduce scan time with equivalent image quality and accuracy compared with standard two-dimensional (2D) flow MRI. We compared 4D flow to standard 2D flow sequences using a constant and pulsatile flow phantom at 3\u2009T.\nMETHODS: Two accelerated 4D flow sequences (GRAPPA2 and k-t-GRAPPA5) were evaluated regarding the concordance of flow volumes, flow velocities, and reproducibility as well as dependency on measuring plane and velocity encoding (Venc). The calculated flow volumes and peak velocities of the phantom were used as reference standard. Flow analysis was performed using the custom-made software \"Bloodline\".\nRESULTS: No significant differences in flow volume were found between the 2D, both 4D flow MRI sequences, and the pump reference (p\u2009=\u20090.994) or flow velocities (p\u2009=\u20090.998) in continuous and pulsatile flow. An excellent correlation (R\u2009=\u20090.99-1.0) with a reference standard and excellent reproducibility of measurements (R\u2009=\u20090.99) was achieved for all sequences. A Venc overestimated by up to two times had no impact on flow measurements. However, misaligned measuring planes led to an increasing underestimation of flow volume and mean velocity in 2D flow accuracy, while both 4D flow measurements were not affected. Scan time was significantly shorter for k-t-GRAPPA5 (1:54\u2009\u00b1\u20090:01\u2009min, mean\u2009\u00b1\u2009standard deviation) compared to GRAPPA2 (3:56\u2009\u00b1\u20090:02\u2009min) (p\u2009=\u20090.002).\nCONCLUSIONS: Both 4D flow sequences demonstrated equal agreement with 2D flow measurements, without impact of Venc overestimation and plane misalignment. The highly accelerated k-t-GRAPPA5 sequence yielded results similar to those of GRAPPA2.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s41747-019-0089-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1290418", 
        "issn": [
          "2509-9280"
        ], 
        "name": "European Radiology Experimental", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Validation of two accelerated 4D flow MRI sequences at 3 T: a phantom study", 
    "pagination": "10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "29c4cd5f9b097acba6fce0b92ff2fe87c86b2d22a2c0936f2d5d22fb7f5be341"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30806827"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101721752"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s41747-019-0089-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112389448"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s41747-019-0089-2", 
      "https://app.dimensions.ai/details/publication/pub.1112389448"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78934_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs41747-019-0089-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41747-019-0089-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41747-019-0089-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41747-019-0089-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41747-019-0089-2'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s41747-019-0089-2 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author Nc6d32129f03c4ce1b6741cfe96490d3c
4 schema:citation sg:pub.10.1007/978-3-662-49465-3_33
5 sg:pub.10.1007/s00234-012-1103-z
6 sg:pub.10.1007/s00330-005-2829-3
7 sg:pub.10.1007/s10334-014-0449-0
8 sg:pub.10.1007/s10334-014-0456-1
9 sg:pub.10.1186/s12968-015-0174-5
10 sg:pub.10.1186/s12968-016-0319-1
11 https://app.dimensions.ai/details/publication/pub.1077034597
12 https://doi.org/10.1002/jmri.10272
13 https://doi.org/10.1002/jmri.20275
14 https://doi.org/10.1002/jmri.20871
15 https://doi.org/10.1002/jmri.21561
16 https://doi.org/10.1002/jmri.22280
17 https://doi.org/10.1002/jmri.25746
18 https://doi.org/10.1002/mrm.10171
19 https://doi.org/10.1002/mrm.1910290611
20 https://doi.org/10.1002/mrm.21763
21 https://doi.org/10.1002/mrm.22090
22 https://doi.org/10.1002/mrm.22875
23 https://doi.org/10.1002/mrm.22907
24 https://doi.org/10.1002/mrm.24925
25 https://doi.org/10.1016/0026-2862(74)90043-0
26 https://doi.org/10.1016/j.acra.2012.12.019
27 https://doi.org/10.1016/j.ejrad.2011.09.019
28 https://doi.org/10.1097/00004424-199302000-00004
29 https://doi.org/10.1097/01.rli.0000195840.50230.10
30 https://doi.org/10.1109/tvcg.2013.189
31 https://doi.org/10.1111/cgf.12803
32 https://doi.org/10.1118/1.597729
33 https://doi.org/10.1148/radiographics.22.3.g02ma11651
34 https://doi.org/10.1371/journal.pone.0070343
35 schema:datePublished 2019-12
36 schema:datePublishedReg 2019-12-01
37 schema:description BACKGROUND: Four-dimensional (4D) flow magnetic resonance imaging (MRI) sequences with advanced parallel imaging have the potential to reduce scan time with equivalent image quality and accuracy compared with standard two-dimensional (2D) flow MRI. We compared 4D flow to standard 2D flow sequences using a constant and pulsatile flow phantom at 3 T. METHODS: Two accelerated 4D flow sequences (GRAPPA2 and k-t-GRAPPA5) were evaluated regarding the concordance of flow volumes, flow velocities, and reproducibility as well as dependency on measuring plane and velocity encoding (Venc). The calculated flow volumes and peak velocities of the phantom were used as reference standard. Flow analysis was performed using the custom-made software "Bloodline". RESULTS: No significant differences in flow volume were found between the 2D, both 4D flow MRI sequences, and the pump reference (p = 0.994) or flow velocities (p = 0.998) in continuous and pulsatile flow. An excellent correlation (R = 0.99-1.0) with a reference standard and excellent reproducibility of measurements (R = 0.99) was achieved for all sequences. A Venc overestimated by up to two times had no impact on flow measurements. However, misaligned measuring planes led to an increasing underestimation of flow volume and mean velocity in 2D flow accuracy, while both 4D flow measurements were not affected. Scan time was significantly shorter for k-t-GRAPPA5 (1:54 ± 0:01 min, mean ± standard deviation) compared to GRAPPA2 (3:56 ± 0:02 min) (p = 0.002). CONCLUSIONS: Both 4D flow sequences demonstrated equal agreement with 2D flow measurements, without impact of Venc overestimation and plane misalignment. The highly accelerated k-t-GRAPPA5 sequence yielded results similar to those of GRAPPA2.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N6d9eb35e187f47fc8590687d6b11752b
42 Nc7fc97955f944499b907ace33ba0468b
43 sg:journal.1290418
44 schema:name Validation of two accelerated 4D flow MRI sequences at 3 T: a phantom study
45 schema:pagination 10
46 schema:productId N1ab284388d5040a5bd9940db1a289ac3
47 N38c7c262e80c47a3b77b2dfa51931de3
48 N6108e42c4196438a9d45b6aec96d263a
49 Na2605185ffc84e479e1d0f1ced422332
50 Neb63da2f0c1a40c797d3f522e197bbfc
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112389448
52 https://doi.org/10.1186/s41747-019-0089-2
53 schema:sdDatePublished 2019-04-11T13:17
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N60b2d65c153042cb86b7c4fb170e406c
56 schema:url https://link.springer.com/10.1186%2Fs41747-019-0089-2
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N09224cf4e8b54917a58a1f19bbe2f797 rdf:first N22f9e0ed7bfe4b1b8e99f4ddae38f524
61 rdf:rest N9c3e72f2760b4dafb77f31140f7ac7c0
62 N1ab284388d5040a5bd9940db1a289ac3 schema:name nlm_unique_id
63 schema:value 101721752
64 rdf:type schema:PropertyValue
65 N22f9e0ed7bfe4b1b8e99f4ddae38f524 schema:affiliation https://www.grid.ac/institutes/grid.5807.a
66 schema:familyName Kropf
67 schema:givenName Siegfried
68 rdf:type schema:Person
69 N38c7c262e80c47a3b77b2dfa51931de3 schema:name dimensions_id
70 schema:value pub.1112389448
71 rdf:type schema:PropertyValue
72 N4c14654744f544e19fda0c240760fd68 schema:affiliation https://www.grid.ac/institutes/grid.9647.c
73 schema:familyName Grothoff
74 schema:givenName Matthias
75 rdf:type schema:Person
76 N53aa75a2efa54dd8a81e6655b71499b4 rdf:first Nd3940eae6c1b431188a84355390a91e7
77 rdf:rest rdf:nil
78 N60b2d65c153042cb86b7c4fb170e406c schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N6108e42c4196438a9d45b6aec96d263a schema:name doi
81 schema:value 10.1186/s41747-019-0089-2
82 rdf:type schema:PropertyValue
83 N6d9eb35e187f47fc8590687d6b11752b schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N6f7397fae63e4e8b9ae01862083dc98a schema:affiliation https://www.grid.ac/institutes/grid.5807.a
86 schema:familyName Köhler
87 schema:givenName Benjamin
88 rdf:type schema:Person
89 N9c3e72f2760b4dafb77f31140f7ac7c0 rdf:first Na3042585e42b4ce0a49943720e34d357
90 rdf:rest Nd6e698067f5248f498c360df0caa74e5
91 Na23f02eda2694c5c8e5ee135ce57e54c schema:affiliation https://www.grid.ac/institutes/grid.5734.5
92 schema:familyName Jung
93 schema:givenName Bernd
94 rdf:type schema:Person
95 Na2605185ffc84e479e1d0f1ced422332 schema:name readcube_id
96 schema:value 29c4cd5f9b097acba6fce0b92ff2fe87c86b2d22a2c0936f2d5d22fb7f5be341
97 rdf:type schema:PropertyValue
98 Na3042585e42b4ce0a49943720e34d357 schema:affiliation https://www.grid.ac/institutes/grid.5807.a
99 schema:familyName Preim
100 schema:givenName Bernhard
101 rdf:type schema:Person
102 Nba4b7401f1a94ed080a0468931e89ea6 schema:affiliation https://www.grid.ac/institutes/grid.9647.c
103 schema:familyName Hübner
104 schema:givenName Lisa
105 rdf:type schema:Person
106 Nc60297ef0d464c95b9fc6dc94c22d6b7 rdf:first N4c14654744f544e19fda0c240760fd68
107 rdf:rest N53aa75a2efa54dd8a81e6655b71499b4
108 Nc6d32129f03c4ce1b6741cfe96490d3c rdf:first Ncbe2fd51b57244b89b57070ca45ae8df
109 rdf:rest Nf0e8b63ac01f4646b4fb7749fc69c3b1
110 Nc7fc97955f944499b907ace33ba0468b schema:volumeNumber 3
111 rdf:type schema:PublicationVolume
112 Ncbe2fd51b57244b89b57070ca45ae8df schema:affiliation https://www.grid.ac/institutes/grid.9647.c
113 schema:familyName Ebel
114 schema:givenName Sebastian
115 rdf:type schema:Person
116 Nd3940eae6c1b431188a84355390a91e7 schema:affiliation https://www.grid.ac/institutes/grid.9647.c
117 schema:familyName Gutberlet
118 schema:givenName Matthias
119 rdf:type schema:Person
120 Nd6e698067f5248f498c360df0caa74e5 rdf:first Na23f02eda2694c5c8e5ee135ce57e54c
121 rdf:rest Nc60297ef0d464c95b9fc6dc94c22d6b7
122 Neb63da2f0c1a40c797d3f522e197bbfc schema:name pubmed_id
123 schema:value 30806827
124 rdf:type schema:PropertyValue
125 Nf0e8b63ac01f4646b4fb7749fc69c3b1 rdf:first Nba4b7401f1a94ed080a0468931e89ea6
126 rdf:rest Nf9b69ec9992c4f1d95f90fd9dd63d4b0
127 Nf9b69ec9992c4f1d95f90fd9dd63d4b0 rdf:first N6f7397fae63e4e8b9ae01862083dc98a
128 rdf:rest N09224cf4e8b54917a58a1f19bbe2f797
129 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
130 schema:name Engineering
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biomedical Engineering
134 rdf:type schema:DefinedTerm
135 sg:journal.1290418 schema:issn 2509-9280
136 schema:name European Radiology Experimental
137 rdf:type schema:Periodical
138 sg:pub.10.1007/978-3-662-49465-3_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033744079
139 https://doi.org/10.1007/978-3-662-49465-3_33
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00234-012-1103-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041709700
142 https://doi.org/10.1007/s00234-012-1103-z
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00330-005-2829-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018583886
145 https://doi.org/10.1007/s00330-005-2829-3
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s10334-014-0449-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038752726
148 https://doi.org/10.1007/s10334-014-0449-0
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s10334-014-0456-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027391632
151 https://doi.org/10.1007/s10334-014-0456-1
152 rdf:type schema:CreativeWork
153 sg:pub.10.1186/s12968-015-0174-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027175700
154 https://doi.org/10.1186/s12968-015-0174-5
155 rdf:type schema:CreativeWork
156 sg:pub.10.1186/s12968-016-0319-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046329822
157 https://doi.org/10.1186/s12968-016-0319-1
158 rdf:type schema:CreativeWork
159 https://app.dimensions.ai/details/publication/pub.1077034597 schema:CreativeWork
160 https://doi.org/10.1002/jmri.10272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050441104
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/jmri.20275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041194011
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/jmri.20871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053183771
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/jmri.21561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040921552
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/jmri.22280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022485192
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/jmri.25746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085138545
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/mrm.10171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012449961
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/mrm.1910290611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003412079
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/mrm.21763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013588487
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/mrm.22090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031507243
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/mrm.22875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027836464
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/mrm.22907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002596483
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/mrm.24925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018512831
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/0026-2862(74)90043-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048639553
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.acra.2012.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009659824
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.ejrad.2011.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046425644
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1097/00004424-199302000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008568997
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1097/01.rli.0000195840.50230.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018699244
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1109/tvcg.2013.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814057
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1111/cgf.12803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006333698
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1118/1.597729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040630007
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1148/radiographics.22.3.g02ma11651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044900210
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1371/journal.pone.0070343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001578156
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.5734.5 schema:alternateName University of Bern
207 schema:name Department of Diagnostic, Interventional and Paediatric Radiology, University of Bern, Bern, Switzerland
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.5807.a schema:alternateName Otto-von-Guericke University Magdeburg
210 schema:name Department of Simulations and Graphics, University of Magdeburg, Magdeburg, Germany
211 Institute for Biometrics and Medical Informatics, University of Magdeburg, Magdeburg, Germany
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.9647.c schema:alternateName Leipzig University
214 schema:name Department of Diagnostic and Interventional Radiology, University of Leipzig – Heart Centre, Leipzig Strümpellstrasse 39, 04289, Leipzig, Germany
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...