Optimisation of ultrasound liver perfusion through a digital reference object and analysis tool View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-03

AUTHORS

Ángel Alberich-Bayarri, Jose Tomás-Cucarella, Alfredo Torregrosa-Lloret, Javier Sáiz Rodriguez, Luis Martí-Bonmatí

ABSTRACT

BACKGROUND: Conventional ultrasound (US) provides important qualitative information, although there is a need to evaluate the influence of the input parameters on the output signal and standardise the acquisition for an adequate quantitative perfusion assessment. The present study analyses how the variation in the input parameters influences the measurement of the perfusion parameters. METHODS: A software tool with simulator of the conventional US signal was created, and the influence of the different input variables on the derived biomarkers was analysed by varying the image acquisition configuration. The input parameters considered were the dynamic range, gain, and frequency of the transducer. Their influence on mean transit time (MTT), the area under the curve (AUC), maximum intensity (MI), and time to peak (TTP) parameters as outputs of the quantitative perfusion analysis was evaluated. A group of 13 patients with hepatocarcinoma was analysed with both a commercial tool and an in-house developed software. RESULTS: The optimal calculated inputs which minimise errors while preserving images' readability consisted of gain of 15 dB, dynamic range of 60 dB, and frequency of 1.5 MHz. The comparison between the in-house developed software and the commercial software provided different values for MTT and AUC, while MI and TTP were highly similar. CONCLUSION: Input parameter selection introduces variability and errors in US perfusion parameter estimation. Our results may add relevant insight into the current knowledge of conventional US perfusion and its use in lesions characterisation, playing in favour of optimised standardised parameter configuration to minimise variability. More... »

PAGES

15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s41747-019-0086-5

DOI

http://dx.doi.org/10.1186/s41747-019-0086-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113182401

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30945029


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Hepatocellular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Circulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biomedical Imaging Research Group (GIBI2^30), Hospital Universitari i Polit\u00e8cnic La Fe, Avda. Fernando Abril Martorell 106, Torre A, 46026 Valencia, Spain", 
            "Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alberich-Bayarri", 
        "givenName": "\u00c1ngel", 
        "id": "sg:person.0760476243.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760476243.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Group (GIBI2^30), Hospital Universitari i Polit\u00e8cnic La Fe, Avda. Fernando Abril Martorell 106, Torre A, 46026 Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/grid.84393.35", 
          "name": [
            "Biomedical Imaging Research Group (GIBI2^30), Hospital Universitari i Polit\u00e8cnic La Fe, Avda. Fernando Abril Martorell 106, Torre A, 46026 Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tom\u00e1s-Cucarella", 
        "givenName": "Jose", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torregrosa-Lloret", 
        "givenName": "Alfredo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electronics Engineering, Polytechnics University of Valencia, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5338.d", 
          "name": [
            "Department of Electronics Engineering, Polytechnics University of Valencia, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodriguez", 
        "givenName": "Javier S\u00e1iz", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Group (GIBI2^30), Hospital Universitari i Polit\u00e8cnic La Fe, Avda. Fernando Abril Martorell 106, Torre A, 46026 Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/grid.84393.35", 
          "name": [
            "Biomedical Imaging Research Group (GIBI2^30), Hospital Universitari i Polit\u00e8cnic La Fe, Avda. Fernando Abril Martorell 106, Torre A, 46026 Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ed-Bonmat\u00ed", 
        "givenName": "Luis", 
        "id": "sg:person.01243117401.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243117401.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10928-007-9066-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023254119", 
          "https://doi.org/10.1007/s10928-007-9066-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-010-1965-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000527088", 
          "https://doi.org/10.1007/s00330-010-1965-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-011-0845-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020667283", 
          "https://doi.org/10.1007/s11517-011-0845-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-7120-3-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032401420", 
          "https://doi.org/10.1186/1476-7120-3-16"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-03", 
    "datePublishedReg": "2019-04-03", 
    "description": "BACKGROUND: Conventional ultrasound (US) provides important qualitative information, although there is a need to evaluate the influence of the input parameters on the output signal and standardise the acquisition for an adequate quantitative perfusion assessment. The present study analyses how the variation in the input parameters influences the measurement of the perfusion parameters.\nMETHODS: A software tool with simulator of the conventional US signal was created, and the influence of the different input variables on the derived biomarkers was analysed by varying the image acquisition configuration. The input parameters considered were the dynamic range, gain, and frequency of the transducer. Their influence on mean transit time (MTT), the area under the curve (AUC), maximum intensity (MI), and time to peak (TTP) parameters as outputs of the quantitative perfusion analysis was evaluated. A group of 13 patients with hepatocarcinoma was analysed with both a commercial tool and an in-house developed software.\nRESULTS: The optimal calculated inputs which minimise errors while preserving images' readability consisted of gain of 15\u2009dB, dynamic range of 60\u2009dB, and frequency of 1.5\u2009MHz. The comparison between the in-house developed software and the commercial software provided different values for MTT and AUC, while MI and TTP were highly similar.\nCONCLUSION: Input parameter selection introduces variability and errors in US perfusion parameter estimation. Our results may add relevant insight into the current knowledge of conventional US perfusion and its use in lesions characterisation, playing in favour of optimised standardised parameter configuration to minimise variability.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s41747-019-0086-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1290418", 
        "issn": [
          "2509-9280"
        ], 
        "name": "European Radiology Experimental", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "input parameter selection", 
      "digital reference object", 
      "perfusion parameter estimation", 
      "software tools", 
      "quantitative perfusion assessment", 
      "commercial tools", 
      "different input variables", 
      "parameter configurations", 
      "input parameters", 
      "analysis tools", 
      "image readability", 
      "reference object", 
      "software", 
      "input variables", 
      "parameter selection", 
      "commercial software", 
      "readability", 
      "important qualitative information", 
      "acquisition configuration", 
      "tool", 
      "qualitative information", 
      "simulator", 
      "parameter estimation", 
      "error", 
      "objects", 
      "minimise variability", 
      "information", 
      "relevant insights", 
      "optimization", 
      "US signals", 
      "input", 
      "perfusion analysis", 
      "configuration", 
      "acquisition", 
      "dynamic range", 
      "estimation", 
      "selection", 
      "signals", 
      "time", 
      "output", 
      "knowledge", 
      "quantitative perfusion analysis", 
      "need", 
      "parameters", 
      "output signal", 
      "gain", 
      "lesion characterisation", 
      "use", 
      "house", 
      "results", 
      "AUC", 
      "peak parameters", 
      "different values", 
      "dB", 
      "area", 
      "TTP", 
      "insights", 
      "analysis", 
      "comparison", 
      "variables", 
      "range", 
      "assessment", 
      "MHz", 
      "values", 
      "variability", 
      "perfusion parameters", 
      "curves", 
      "measurements", 
      "variation", 
      "study", 
      "frequency", 
      "influence", 
      "favor", 
      "transducer", 
      "ultrasound", 
      "perfusion assessment", 
      "group", 
      "conventional ultrasound", 
      "intensity", 
      "mean transit time", 
      "transit time", 
      "characterisation", 
      "maximum intensity", 
      "current knowledge", 
      "patients", 
      "biomarkers", 
      "present study", 
      "perfusion", 
      "liver perfusion", 
      "hepatocarcinoma", 
      "adequate quantitative perfusion assessment", 
      "conventional US signal", 
      "image acquisition configuration", 
      "US perfusion parameter estimation", 
      "conventional US perfusion", 
      "US perfusion", 
      "standardised parameter configuration", 
      "ultrasound liver perfusion"
    ], 
    "name": "Optimisation of ultrasound liver perfusion through a digital reference object and analysis tool", 
    "pagination": "15", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113182401"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s41747-019-0086-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30945029"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s41747-019-0086-5", 
      "https://app.dimensions.ai/details/publication/pub.1113182401"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_806.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s41747-019-0086-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41747-019-0086-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41747-019-0086-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41747-019-0086-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41747-019-0086-5'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      22 PREDICATES      138 URIs      126 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s41747-019-0086-5 schema:about N028556a68c1e48b89e6879b64a0ee75e
2 N1f5809ef31e441129cd3e4bbaeba1d4c
3 N225e5b196e4946f0b12663773e84dc24
4 N3b1288f7d54c4e949c425ad8c0936d61
5 N648010cfcd5b4392a08d8691bbd73412
6 N8be146f4c50844de81c9877204df2d98
7 N8eb291e6524f4c1783c114b8e30fffda
8 N941acecf46914f61adb2f62a97fc45ff
9 Ne75dd92013684de2927e1447e9871114
10 Necb04d17100642f28b3708747bfad7e3
11 anzsrc-for:01
12 anzsrc-for:0104
13 schema:author Nbc2bd07386234704bbbdb96012be34db
14 schema:citation sg:pub.10.1007/s00330-010-1965-6
15 sg:pub.10.1007/s10928-007-9066-0
16 sg:pub.10.1007/s11517-011-0845-9
17 sg:pub.10.1186/1476-7120-3-16
18 schema:datePublished 2019-04-03
19 schema:datePublishedReg 2019-04-03
20 schema:description BACKGROUND: Conventional ultrasound (US) provides important qualitative information, although there is a need to evaluate the influence of the input parameters on the output signal and standardise the acquisition for an adequate quantitative perfusion assessment. The present study analyses how the variation in the input parameters influences the measurement of the perfusion parameters. METHODS: A software tool with simulator of the conventional US signal was created, and the influence of the different input variables on the derived biomarkers was analysed by varying the image acquisition configuration. The input parameters considered were the dynamic range, gain, and frequency of the transducer. Their influence on mean transit time (MTT), the area under the curve (AUC), maximum intensity (MI), and time to peak (TTP) parameters as outputs of the quantitative perfusion analysis was evaluated. A group of 13 patients with hepatocarcinoma was analysed with both a commercial tool and an in-house developed software. RESULTS: The optimal calculated inputs which minimise errors while preserving images' readability consisted of gain of 15 dB, dynamic range of 60 dB, and frequency of 1.5 MHz. The comparison between the in-house developed software and the commercial software provided different values for MTT and AUC, while MI and TTP were highly similar. CONCLUSION: Input parameter selection introduces variability and errors in US perfusion parameter estimation. Our results may add relevant insight into the current knowledge of conventional US perfusion and its use in lesions characterisation, playing in favour of optimised standardised parameter configuration to minimise variability.
21 schema:genre article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N56c68cc1b635456695951cb6cd03f23a
25 N75381430eb54431cb76612064bda5ecd
26 sg:journal.1290418
27 schema:keywords AUC
28 MHz
29 TTP
30 US perfusion
31 US perfusion parameter estimation
32 US signals
33 acquisition
34 acquisition configuration
35 adequate quantitative perfusion assessment
36 analysis
37 analysis tools
38 area
39 assessment
40 biomarkers
41 characterisation
42 commercial software
43 commercial tools
44 comparison
45 configuration
46 conventional US perfusion
47 conventional US signal
48 conventional ultrasound
49 current knowledge
50 curves
51 dB
52 different input variables
53 different values
54 digital reference object
55 dynamic range
56 error
57 estimation
58 favor
59 frequency
60 gain
61 group
62 hepatocarcinoma
63 house
64 image acquisition configuration
65 image readability
66 important qualitative information
67 influence
68 information
69 input
70 input parameter selection
71 input parameters
72 input variables
73 insights
74 intensity
75 knowledge
76 lesion characterisation
77 liver perfusion
78 maximum intensity
79 mean transit time
80 measurements
81 minimise variability
82 need
83 objects
84 optimization
85 output
86 output signal
87 parameter configurations
88 parameter estimation
89 parameter selection
90 parameters
91 patients
92 peak parameters
93 perfusion
94 perfusion analysis
95 perfusion assessment
96 perfusion parameter estimation
97 perfusion parameters
98 present study
99 qualitative information
100 quantitative perfusion analysis
101 quantitative perfusion assessment
102 range
103 readability
104 reference object
105 relevant insights
106 results
107 selection
108 signals
109 simulator
110 software
111 software tools
112 standardised parameter configuration
113 study
114 time
115 tool
116 transducer
117 transit time
118 ultrasound
119 ultrasound liver perfusion
120 use
121 values
122 variability
123 variables
124 variation
125 schema:name Optimisation of ultrasound liver perfusion through a digital reference object and analysis tool
126 schema:pagination 15
127 schema:productId N50388bd760424368957654dbcec98076
128 N7a9cd07267b348188d31096b977ace02
129 N95a568c60ca746a29bbac536bcba17d0
130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113182401
131 https://doi.org/10.1186/s41747-019-0086-5
132 schema:sdDatePublished 2022-01-01T18:51
133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
134 schema:sdPublisher N3d9ce2af8d1c407797d89987e3851f22
135 schema:url https://doi.org/10.1186/s41747-019-0086-5
136 sgo:license sg:explorer/license/
137 sgo:sdDataset articles
138 rdf:type schema:ScholarlyArticle
139 N028556a68c1e48b89e6879b64a0ee75e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Middle Aged
141 rdf:type schema:DefinedTerm
142 N1f5809ef31e441129cd3e4bbaeba1d4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Humans
144 rdf:type schema:DefinedTerm
145 N225e5b196e4946f0b12663773e84dc24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Male
147 rdf:type schema:DefinedTerm
148 N3b1288f7d54c4e949c425ad8c0936d61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Carcinoma, Hepatocellular
150 rdf:type schema:DefinedTerm
151 N3d9ce2af8d1c407797d89987e3851f22 schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 N4ed433cd2fab4f96a6bdce8c1865e255 schema:affiliation grid-institutes:grid.84393.35
154 schema:familyName Tomás-Cucarella
155 schema:givenName Jose
156 rdf:type schema:Person
157 N50388bd760424368957654dbcec98076 schema:name pubmed_id
158 schema:value 30945029
159 rdf:type schema:PropertyValue
160 N56c68cc1b635456695951cb6cd03f23a schema:issueNumber 1
161 rdf:type schema:PublicationIssue
162 N648010cfcd5b4392a08d8691bbd73412 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Liver Neoplasms
164 rdf:type schema:DefinedTerm
165 N75381430eb54431cb76612064bda5ecd schema:volumeNumber 3
166 rdf:type schema:PublicationVolume
167 N7a9cd07267b348188d31096b977ace02 schema:name doi
168 schema:value 10.1186/s41747-019-0086-5
169 rdf:type schema:PropertyValue
170 N7eb03b091e844eecaa3db9f5fb3ae9d8 rdf:first sg:person.01243117401.10
171 rdf:rest rdf:nil
172 N7ebcbb39ed0f40ee938312e72c61152c rdf:first N4ed433cd2fab4f96a6bdce8c1865e255
173 rdf:rest Nfd1e79a51d7a45a2861b1cfe7c887ea9
174 N851090dda67b4a798ae6eefcefc118f2 schema:affiliation grid-institutes:grid.5338.d
175 schema:familyName Rodriguez
176 schema:givenName Javier Sáiz
177 rdf:type schema:Person
178 N8be146f4c50844de81c9877204df2d98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Aged
180 rdf:type schema:DefinedTerm
181 N8eb291e6524f4c1783c114b8e30fffda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Liver Circulation
183 rdf:type schema:DefinedTerm
184 N93c72479bb6b498e89e9943c61cf3054 schema:affiliation grid-institutes:None
185 schema:familyName Torregrosa-Lloret
186 schema:givenName Alfredo
187 rdf:type schema:Person
188 N941acecf46914f61adb2f62a97fc45ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Ultrasonography
190 rdf:type schema:DefinedTerm
191 N95a568c60ca746a29bbac536bcba17d0 schema:name dimensions_id
192 schema:value pub.1113182401
193 rdf:type schema:PropertyValue
194 Naa9647c7410c4919ba5d64296f8cfd6a rdf:first N851090dda67b4a798ae6eefcefc118f2
195 rdf:rest N7eb03b091e844eecaa3db9f5fb3ae9d8
196 Nbc2bd07386234704bbbdb96012be34db rdf:first sg:person.0760476243.40
197 rdf:rest N7ebcbb39ed0f40ee938312e72c61152c
198 Ne75dd92013684de2927e1447e9871114 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Software
200 rdf:type schema:DefinedTerm
201 Necb04d17100642f28b3708747bfad7e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Female
203 rdf:type schema:DefinedTerm
204 Nfd1e79a51d7a45a2861b1cfe7c887ea9 rdf:first N93c72479bb6b498e89e9943c61cf3054
205 rdf:rest Naa9647c7410c4919ba5d64296f8cfd6a
206 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
207 schema:name Mathematical Sciences
208 rdf:type schema:DefinedTerm
209 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
210 schema:name Statistics
211 rdf:type schema:DefinedTerm
212 sg:journal.1290418 schema:issn 2509-9280
213 schema:name European Radiology Experimental
214 schema:publisher Springer Nature
215 rdf:type schema:Periodical
216 sg:person.01243117401.10 schema:affiliation grid-institutes:grid.84393.35
217 schema:familyName Martí-Bonmatí
218 schema:givenName Luis
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243117401.10
220 rdf:type schema:Person
221 sg:person.0760476243.40 schema:affiliation grid-institutes:None
222 schema:familyName Alberich-Bayarri
223 schema:givenName Ángel
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760476243.40
225 rdf:type schema:Person
226 sg:pub.10.1007/s00330-010-1965-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000527088
227 https://doi.org/10.1007/s00330-010-1965-6
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/s10928-007-9066-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023254119
230 https://doi.org/10.1007/s10928-007-9066-0
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s11517-011-0845-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020667283
233 https://doi.org/10.1007/s11517-011-0845-9
234 rdf:type schema:CreativeWork
235 sg:pub.10.1186/1476-7120-3-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032401420
236 https://doi.org/10.1186/1476-7120-3-16
237 rdf:type schema:CreativeWork
238 grid-institutes:None schema:alternateName Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
239 schema:name Biomedical Imaging Research Group (GIBI2^30), Hospital Universitari i Politècnic La Fe, Avda. Fernando Abril Martorell 106, Torre A, 46026 Valencia, Spain
240 Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
241 rdf:type schema:Organization
242 grid-institutes:grid.5338.d schema:alternateName Department of Electronics Engineering, Polytechnics University of Valencia, Valencia, Spain
243 schema:name Department of Electronics Engineering, Polytechnics University of Valencia, Valencia, Spain
244 rdf:type schema:Organization
245 grid-institutes:grid.84393.35 schema:alternateName Biomedical Imaging Research Group (GIBI2^30), Hospital Universitari i Politècnic La Fe, Avda. Fernando Abril Martorell 106, Torre A, 46026 Valencia, Spain
246 schema:name Biomedical Imaging Research Group (GIBI2^30), Hospital Universitari i Politècnic La Fe, Avda. Fernando Abril Martorell 106, Torre A, 46026 Valencia, Spain
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...