Radiomics of liver MRI predict metastases in mice View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Anton S. Becker, Marcel A. Schneider, Moritz C. Wurnig, Matthias Wagner, Pierre A. Clavien, Andreas Boss

ABSTRACT

Background: The purpose of this study was to investigate whether any texture features show a correlation with intrahepatic tumor growth before the metastasis is visible to the human eye. Methods: Eight male C57BL6 mice (age 8-10 weeks) were injected intraportally with syngeneic MC-38 colon cancer cells and two mice were injected with phosphate-buffered saline (sham controls). Small animal magnetic resonance imaging (MRI) at 4.7 T was performed at baseline and days 4, 8, 12, 16, and 20 after injection applying a T2-weighted spin-echo sequence. Texture analysis was performed on the images yielding 32 texture features derived from histogram, gray-level co-occurrence matrix, gray-level run-length matrix, and gray-level size-zone matrix. The features were examined with a linear regression model/Pearson correlation test and hierarchical cluster analysis. From each cluster, the feature with the lowest variance was selected. Results: Tumors were visible on MRI after 20 days. Eighteen features from histogram and the gray-level-matrices exhibited statistically significant correlations before day 20 in the experiment group, but not in the control animals. Cluster analysis revealed three distinct clusters of independent features. The features with the lowest variance were Energy, Short Run Emphasis, and Gray Level Non-Uniformity. Conclusions: Texture features may quantitatively detect liver metastases before they become visually detectable by the radiologist. More... »

PAGES

11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s41747-018-0044-7

DOI

http://dx.doi.org/10.1186/s41747-018-0044-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104245332

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29882527


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University Hospital of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.412004.3", 
          "name": [
            "Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Becker", 
        "givenName": "Anton S.", 
        "id": "sg:person.0617040237.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617040237.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.412004.3", 
          "name": [
            "Division of Transplantation and Visceral Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schneider", 
        "givenName": "Marcel A.", 
        "id": "sg:person.015110521175.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110521175.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.412004.3", 
          "name": [
            "Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wurnig", 
        "givenName": "Moritz C.", 
        "id": "sg:person.0632523424.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632523424.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.412004.3", 
          "name": [
            "Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "Matthias", 
        "id": "sg:person.01045212520.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045212520.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.412004.3", 
          "name": [
            "Division of Transplantation and Visceral Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clavien", 
        "givenName": "Pierre A.", 
        "id": "sg:person.01014450125.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014450125.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.412004.3", 
          "name": [
            "Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boss", 
        "givenName": "Andreas", 
        "id": "sg:person.0651415641.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651415641.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-8655(91)80014-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000639154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0141506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006047185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181a50a66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006349796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181a50a66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006349796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181a50a66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006349796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.10042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008666553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3081408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010836116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2013.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015650366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2003.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018018059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e31824856f5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022177341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e31824856f5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022177341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3701-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022449857", 
          "https://doi.org/10.1007/s00330-015-3701-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra065156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024894126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2008.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026583458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0146-664x(75)80008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027475370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028679513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.3669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028705757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3845-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030666279", 
          "https://doi.org/10.1007/s00330-015-3845-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2011.11.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032206774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2013.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034382888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11110577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035249822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0029-1242458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035322968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0039-6109(02)00051-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037951168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/60/14/5471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038681832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/60/14/5471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038681832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041615694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e318248577d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043863480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e318248577d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043863480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045318756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artmed.2007.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045772526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2482071822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050615040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.1711500308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052600051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.1711500308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052600051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2007.10.8126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052746588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053288592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1973.4309314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1978.4309999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061793131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218001413570024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062950168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpgi.00209.2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063192842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.00.349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064204185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2015.65.9128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064204513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.09.3730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075081344", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076584973", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3978/j.issn.2223-4292.2016.02.01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079242669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016151975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079259196"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Background: The purpose of this study was to investigate whether any texture features show a correlation with intrahepatic tumor growth before the metastasis is visible to the human eye.\nMethods: Eight male C57BL6 mice (age 8-10\u00a0weeks) were injected intraportally with syngeneic MC-38 colon cancer cells and two mice were injected with phosphate-buffered saline (sham controls). Small animal magnetic resonance imaging (MRI) at 4.7\u00a0T was performed at baseline and days 4, 8, 12, 16, and 20 after injection applying a T2-weighted spin-echo sequence. Texture analysis was performed on the images yielding 32 texture features derived from histogram, gray-level co-occurrence matrix, gray-level run-length matrix, and gray-level size-zone matrix. The features were examined with a linear regression model/Pearson correlation test and hierarchical cluster analysis. From each cluster, the feature with the lowest variance was selected.\nResults: Tumors were visible on MRI after 20\u00a0days. Eighteen features from histogram and the gray-level-matrices exhibited statistically significant correlations before day 20 in the experiment group, but not in the control animals. Cluster analysis revealed three distinct clusters of independent features. The features with the lowest variance were Energy, Short Run Emphasis, and Gray Level Non-Uniformity.\nConclusions: Texture features may quantitatively detect liver metastases before they become visually detectable by the radiologist.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s41747-018-0044-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1290418", 
        "issn": [
          "2509-9280"
        ], 
        "name": "European Radiology Experimental", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Radiomics of liver MRI predict metastases in mice", 
    "pagination": "11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "06375547e271d80a08f5cc3be9fc60925e9873ad66f8fddc0b4275d89cf28eb2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29882527"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101721752"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s41747-018-0044-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104245332"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s41747-018-0044-7", 
      "https://app.dimensions.ai/details/publication/pub.1104245332"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs41747-018-0044-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41747-018-0044-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41747-018-0044-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41747-018-0044-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41747-018-0044-7'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      21 PREDICATES      69 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s41747-018-0044-7 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nb0577b7c10c442e4a49523c72ee71301
4 schema:citation sg:pub.10.1007/s00330-015-3701-8
5 sg:pub.10.1007/s00330-015-3845-6
6 https://app.dimensions.ai/details/publication/pub.1075081344
7 https://app.dimensions.ai/details/publication/pub.1076584973
8 https://doi.org/10.1002/jmri.10042
9 https://doi.org/10.1002/jmri.22268
10 https://doi.org/10.1002/jmri.25088
11 https://doi.org/10.1002/nbm.3669
12 https://doi.org/10.1002/path.1711500308
13 https://doi.org/10.1016/0167-8655(91)80014-2
14 https://doi.org/10.1016/j.artmed.2007.05.002
15 https://doi.org/10.1016/j.ejca.2011.11.036
16 https://doi.org/10.1016/j.ejrad.2012.12.005
17 https://doi.org/10.1016/j.ejrad.2013.06.024
18 https://doi.org/10.1016/j.ejrad.2016.01.013
19 https://doi.org/10.1016/j.mri.2003.09.001
20 https://doi.org/10.1016/j.mri.2013.04.006
21 https://doi.org/10.1016/j.patrec.2008.06.003
22 https://doi.org/10.1016/s0039-6109(02)00051-8
23 https://doi.org/10.1016/s0146-664x(75)80008-6
24 https://doi.org/10.1055/s-0029-1242458
25 https://doi.org/10.1056/nejmra065156
26 https://doi.org/10.1088/0031-9155/60/14/5471
27 https://doi.org/10.1097/rli.0b013e3181a50a66
28 https://doi.org/10.1097/sla.0b013e31824856f5
29 https://doi.org/10.1097/sla.0b013e318248577d
30 https://doi.org/10.1109/tsmc.1973.4309314
31 https://doi.org/10.1109/tsmc.1978.4309999
32 https://doi.org/10.1118/1.3081408
33 https://doi.org/10.1142/s0218001413570024
34 https://doi.org/10.1148/radiol.11110577
35 https://doi.org/10.1148/radiol.2016151975
36 https://doi.org/10.1148/radiol.2482071822
37 https://doi.org/10.1152/ajpgi.00209.2015
38 https://doi.org/10.1200/jco.2005.00.349
39 https://doi.org/10.1200/jco.2007.10.8126
40 https://doi.org/10.1200/jco.2015.65.9128
41 https://doi.org/10.1371/journal.pone.0141506
42 https://doi.org/10.2214/ajr.09.3730
43 https://doi.org/10.3978/j.issn.2223-4292.2016.02.01
44 schema:datePublished 2018-12
45 schema:datePublishedReg 2018-12-01
46 schema:description Background: The purpose of this study was to investigate whether any texture features show a correlation with intrahepatic tumor growth before the metastasis is visible to the human eye. Methods: Eight male C57BL6 mice (age 8-10 weeks) were injected intraportally with syngeneic MC-38 colon cancer cells and two mice were injected with phosphate-buffered saline (sham controls). Small animal magnetic resonance imaging (MRI) at 4.7 T was performed at baseline and days 4, 8, 12, 16, and 20 after injection applying a T2-weighted spin-echo sequence. Texture analysis was performed on the images yielding 32 texture features derived from histogram, gray-level co-occurrence matrix, gray-level run-length matrix, and gray-level size-zone matrix. The features were examined with a linear regression model/Pearson correlation test and hierarchical cluster analysis. From each cluster, the feature with the lowest variance was selected. Results: Tumors were visible on MRI after 20 days. Eighteen features from histogram and the gray-level-matrices exhibited statistically significant correlations before day 20 in the experiment group, but not in the control animals. Cluster analysis revealed three distinct clusters of independent features. The features with the lowest variance were Energy, Short Run Emphasis, and Gray Level Non-Uniformity. Conclusions: Texture features may quantitatively detect liver metastases before they become visually detectable by the radiologist.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N2b57e62edcbb459aaab1898511548d3d
51 Nf7f41a05e1e04158bb0a4ff42b112360
52 sg:journal.1290418
53 schema:name Radiomics of liver MRI predict metastases in mice
54 schema:pagination 11
55 schema:productId N13e4254ccabb48e2aa5bc8e1acb24c6d
56 N1af6dd87bad14c10a064a2877ec7183d
57 N3d41876077fc4ecea9864d88283a11a1
58 Ndd104cadedb046659fe5b52b9d07ccfb
59 Nf3623d86d2a749db86937a4e63602bc0
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104245332
61 https://doi.org/10.1186/s41747-018-0044-7
62 schema:sdDatePublished 2019-04-10T13:27
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Na9d5a866f60e4e58b73c19fb3f9b3bf5
65 schema:url https://link.springer.com/10.1186%2Fs41747-018-0044-7
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N04a4c60d99dd4144a47d0a5163cc2a7c rdf:first sg:person.01045212520.54
70 rdf:rest Nc1628eda952e4f38bd1eadf8c0ed76e5
71 N13e4254ccabb48e2aa5bc8e1acb24c6d schema:name pubmed_id
72 schema:value 29882527
73 rdf:type schema:PropertyValue
74 N1af6dd87bad14c10a064a2877ec7183d schema:name readcube_id
75 schema:value 06375547e271d80a08f5cc3be9fc60925e9873ad66f8fddc0b4275d89cf28eb2
76 rdf:type schema:PropertyValue
77 N21b2346b23c94cfab4b622196811c89b rdf:first sg:person.015110521175.26
78 rdf:rest Nd3f89993cd394a6cada42f07662d546b
79 N2b57e62edcbb459aaab1898511548d3d schema:issueNumber 1
80 rdf:type schema:PublicationIssue
81 N3d41876077fc4ecea9864d88283a11a1 schema:name doi
82 schema:value 10.1186/s41747-018-0044-7
83 rdf:type schema:PropertyValue
84 N7820e1a3a9194460b4b5d9af0b832fae rdf:first sg:person.0651415641.77
85 rdf:rest rdf:nil
86 Na9d5a866f60e4e58b73c19fb3f9b3bf5 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nb0577b7c10c442e4a49523c72ee71301 rdf:first sg:person.0617040237.36
89 rdf:rest N21b2346b23c94cfab4b622196811c89b
90 Nc1628eda952e4f38bd1eadf8c0ed76e5 rdf:first sg:person.01014450125.38
91 rdf:rest N7820e1a3a9194460b4b5d9af0b832fae
92 Nd3f89993cd394a6cada42f07662d546b rdf:first sg:person.0632523424.41
93 rdf:rest N04a4c60d99dd4144a47d0a5163cc2a7c
94 Ndd104cadedb046659fe5b52b9d07ccfb schema:name dimensions_id
95 schema:value pub.1104245332
96 rdf:type schema:PropertyValue
97 Nf3623d86d2a749db86937a4e63602bc0 schema:name nlm_unique_id
98 schema:value 101721752
99 rdf:type schema:PropertyValue
100 Nf7f41a05e1e04158bb0a4ff42b112360 schema:volumeNumber 2
101 rdf:type schema:PublicationVolume
102 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
103 schema:name Medical and Health Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
106 schema:name Clinical Sciences
107 rdf:type schema:DefinedTerm
108 sg:journal.1290418 schema:issn 2509-9280
109 schema:name European Radiology Experimental
110 rdf:type schema:Periodical
111 sg:person.01014450125.38 schema:affiliation https://www.grid.ac/institutes/grid.412004.3
112 schema:familyName Clavien
113 schema:givenName Pierre A.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014450125.38
115 rdf:type schema:Person
116 sg:person.01045212520.54 schema:affiliation https://www.grid.ac/institutes/grid.412004.3
117 schema:familyName Wagner
118 schema:givenName Matthias
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045212520.54
120 rdf:type schema:Person
121 sg:person.015110521175.26 schema:affiliation https://www.grid.ac/institutes/grid.412004.3
122 schema:familyName Schneider
123 schema:givenName Marcel A.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110521175.26
125 rdf:type schema:Person
126 sg:person.0617040237.36 schema:affiliation https://www.grid.ac/institutes/grid.412004.3
127 schema:familyName Becker
128 schema:givenName Anton S.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617040237.36
130 rdf:type schema:Person
131 sg:person.0632523424.41 schema:affiliation https://www.grid.ac/institutes/grid.412004.3
132 schema:familyName Wurnig
133 schema:givenName Moritz C.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632523424.41
135 rdf:type schema:Person
136 sg:person.0651415641.77 schema:affiliation https://www.grid.ac/institutes/grid.412004.3
137 schema:familyName Boss
138 schema:givenName Andreas
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651415641.77
140 rdf:type schema:Person
141 sg:pub.10.1007/s00330-015-3701-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022449857
142 https://doi.org/10.1007/s00330-015-3701-8
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00330-015-3845-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030666279
145 https://doi.org/10.1007/s00330-015-3845-6
146 rdf:type schema:CreativeWork
147 https://app.dimensions.ai/details/publication/pub.1075081344 schema:CreativeWork
148 https://app.dimensions.ai/details/publication/pub.1076584973 schema:CreativeWork
149 https://doi.org/10.1002/jmri.10042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008666553
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/jmri.22268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053288592
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/jmri.25088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028679513
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/nbm.3669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028705757
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/path.1711500308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052600051
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0167-8655(91)80014-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000639154
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.artmed.2007.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045772526
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ejca.2011.11.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032206774
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ejrad.2012.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045318756
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ejrad.2013.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034382888
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ejrad.2016.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041615694
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.mri.2003.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018018059
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.mri.2013.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015650366
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.patrec.2008.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026583458
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0039-6109(02)00051-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037951168
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0146-664x(75)80008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027475370
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1055/s-0029-1242458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035322968
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1056/nejmra065156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024894126
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1088/0031-9155/60/14/5471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038681832
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1097/rli.0b013e3181a50a66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006349796
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1097/sla.0b013e31824856f5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022177341
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1097/sla.0b013e318248577d schema:sameAs https://app.dimensions.ai/details/publication/pub.1043863480
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/tsmc.1973.4309314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792707
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/tsmc.1978.4309999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061793131
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1118/1.3081408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010836116
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1142/s0218001413570024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062950168
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1148/radiol.11110577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035249822
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1148/radiol.2016151975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079259196
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1148/radiol.2482071822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050615040
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1152/ajpgi.00209.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063192842
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1200/jco.2005.00.349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064204185
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1200/jco.2007.10.8126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052746588
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1200/jco.2015.65.9128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064204513
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1371/journal.pone.0141506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006047185
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2214/ajr.09.3730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300593
218 rdf:type schema:CreativeWork
219 https://doi.org/10.3978/j.issn.2223-4292.2016.02.01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079242669
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.412004.3 schema:alternateName University Hospital of Zurich
222 schema:name Division of Transplantation and Visceral Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
223 Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...