Ontology type: schema:ScholarlyArticle Open Access: True
2020-05-19
AUTHORSJonathan Ansari, Ludger Rüschendorf
ABSTRACTFor the class of (partially specified) internal risk factor models we establish strongly simplified supermodular ordering results in comparison to the case of general risk factor models. This allows us to derive meaningful and improved risk bounds for the joint portfolio in risk factor models with dependence information given by constrained specification sets for the copulas of the risk components and the systemic risk factor. The proof of our main comparison result is not standard. It is based on grid copula approximation of upper products of copulas and on the theory of mass transfers. An application to real market data shows considerable improvement over the standard method. More... »
PAGES3
http://scigraph.springernature.com/pub.10.1186/s41546-020-00045-y
DOIhttp://dx.doi.org/10.1186/s41546-020-00045-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1127695960
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Commerce, Management, Tourism and Services",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Banking, Finance and Investment",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Quantitative Finance, Albert-Ludwigs University of Freiburg, Platz der Alten Synagoge 1, KG II, 79098, Freiburg i. Br., Germany",
"id": "http://www.grid.ac/institutes/grid.5963.9",
"name": [
"Department of Quantitative Finance, Albert-Ludwigs University of Freiburg, Platz der Alten Synagoge 1, KG II, 79098, Freiburg i. Br., Germany"
],
"type": "Organization"
},
"familyName": "Ansari",
"givenName": "Jonathan",
"id": "sg:person.013321466344.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013321466344.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematical Stochastics, Albert-Ludwigs University of Freiburg, Ernst-Zermelo-Stra\u00dfe 1, 79104, Freiburg, Germany",
"id": "http://www.grid.ac/institutes/grid.5963.9",
"name": [
"Department of Mathematical Stochastics, Albert-Ludwigs University of Freiburg, Ernst-Zermelo-Stra\u00dfe 1, 79104, Freiburg, Germany"
],
"type": "Organization"
},
"familyName": "R\u00fcschendorf",
"givenName": "Ludger",
"id": "sg:person.012503363065.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012503363065.66"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-0-387-34675-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037878151",
"https://doi.org/10.1007/978-0-387-34675-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00780-015-0273-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018990260",
"https://doi.org/10.1007/s00780-015-0273-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00780-017-0328-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085382328",
"https://doi.org/10.1007/s00780-017-0328-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-64221-5_12",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092210138",
"https://doi.org/10.1007/978-3-319-64221-5_12"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4614-6892-9_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042713935",
"https://doi.org/10.1007/978-1-4614-6892-9_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11009-016-9536-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029047804",
"https://doi.org/10.1007/s11009-016-9536-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-50986-0_17",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092417886",
"https://doi.org/10.1007/978-3-319-50986-0_17"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00780-006-0005-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000950696",
"https://doi.org/10.1007/s00780-006-0005-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-33590-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009531412",
"https://doi.org/10.1007/978-3-642-33590-7"
],
"type": "CreativeWork"
}
],
"datePublished": "2020-05-19",
"datePublishedReg": "2020-05-19",
"description": "For the class of (partially specified) internal risk factor models we establish strongly simplified supermodular ordering results in comparison to the case of general risk factor models. This allows us to derive meaningful and improved risk bounds for the joint portfolio in risk factor models with dependence information given by constrained specification sets for the copulas of the risk components and the systemic risk factor. The proof of our main comparison result is not standard. It is based on grid copula approximation of upper products of copulas and on the theory of mass transfers. An application to real market data shows considerable improvement over the standard method.",
"genre": "article",
"id": "sg:pub.10.1186/s41546-020-00045-y",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1290466",
"issn": [
"2095-9672",
"2367-0126"
],
"name": "Probability, Uncertainty and Quantitative Risk",
"publisher": "American Institute of Mathematical Sciences (AIMS)",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "5"
}
],
"keywords": [
"risk bounds",
"real market data",
"main comparison results",
"upper products",
"ordering results",
"joint portfolio",
"factor model",
"specification set",
"bounds",
"comparison results",
"market data",
"copula",
"dependence information",
"approximation",
"mass transfer",
"model",
"set",
"theory",
"considerable improvement",
"standard methods",
"proof",
"class",
"risk factor model",
"risk components",
"applications",
"results",
"portfolio",
"cases",
"comparison",
"information",
"transfer",
"data",
"components",
"improvement",
"products",
"factors",
"systemic risk factors",
"method",
"risk factors"
],
"name": "Upper risk bounds in internal factor models with constrained specification sets",
"pagination": "3",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1127695960"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s41546-020-00045-y"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s41546-020-00045-y",
"https://app.dimensions.ai/details/publication/pub.1127695960"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:27",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_848.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s41546-020-00045-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41546-020-00045-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41546-020-00045-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41546-020-00045-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41546-020-00045-y'
This table displays all metadata directly associated to this object as RDF triples.
142 TRIPLES
22 PREDICATES
73 URIs
56 LITERALS
6 BLANK NODES