Moderate deviation for maximum likelihood estimators from single server queues View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-03-24

AUTHORS

Saroja Kumar Singh

ABSTRACT

Consider a single server queueing model which is observed over a continuous time interval (0,T], where T is determined by a suitable stopping rule. Let θ be the unknown parameter for the arrival process and θ̂T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat {\theta }_{T}$\end{document} be the maximum likelihood estimator of θ. The main goal of this paper is to obtain a moderate deviation result of the maximum likelihood estimator for the single server queueing model under certain regular conditions. More... »

PAGES

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s41546-020-00044-z

DOI

http://dx.doi.org/10.1186/s41546-020-00044-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1125859912


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "P. G. Department of Statistics, Sambalpur University, Odisha, India", 
          "id": "http://www.grid.ac/institutes/grid.444716.4", 
          "name": [
            "P. G. Department of Statistics, Sambalpur University, Odisha, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Saroja Kumar", 
        "id": "sg:person.07713442513.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07713442513.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10440-009-9479-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016112198", 
          "https://doi.org/10.1007/s10440-009-9479-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01157852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007085053", 
          "https://doi.org/10.1007/bf01157852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5320-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705063", 
          "https://doi.org/10.1007/978-1-4612-5320-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019158230616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040122892", 
          "https://doi.org/10.1023/a:1019158230616"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-03-24", 
    "datePublishedReg": "2020-03-24", 
    "description": "Consider a single server queueing model which is observed over a continuous time interval (0,T], where T is determined by a suitable stopping rule. Let \u03b8 be the unknown parameter for the arrival process and \u03b8\u0302T\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\hat {\\theta }_{T}$\\end{document} be the maximum likelihood estimator of \u03b8. The main goal of this paper is to obtain a moderate deviation result of the maximum likelihood estimator for the single server queueing model under certain regular conditions.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s41546-020-00044-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1290466", 
        "issn": [
          "2095-9672", 
          "2367-0126"
        ], 
        "name": "Probability, Uncertainty and Quantitative Risk", 
        "publisher": "American Institute of Mathematical Sciences (AIMS)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "single server queueing model", 
      "maximum likelihood estimator", 
      "likelihood estimator", 
      "server queueing model", 
      "queueing model", 
      "suitable stopping rule", 
      "certain regular conditions", 
      "moderate deviation result", 
      "single server queue", 
      "continuous time interval", 
      "unknown parameters", 
      "server queue", 
      "stopping rule", 
      "arrival process", 
      "deviation results", 
      "estimator", 
      "regular conditions", 
      "moderate deviations", 
      "main goal", 
      "model", 
      "time interval", 
      "queue", 
      "parameters", 
      "deviation", 
      "rules", 
      "interval", 
      "results", 
      "conditions", 
      "process", 
      "goal", 
      "paper"
    ], 
    "name": "Moderate deviation for maximum likelihood estimators from single server queues", 
    "pagination": "2", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1125859912"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s41546-020-00044-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s41546-020-00044-z", 
      "https://app.dimensions.ai/details/publication/pub.1125859912"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_837.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s41546-020-00044-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41546-020-00044-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41546-020-00044-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41546-020-00044-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41546-020-00044-z'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      22 PREDICATES      60 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s41546-020-00044-z schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nbd4eed9c575e4294943f789681692888
4 schema:citation sg:pub.10.1007/978-1-4612-5320-4
5 sg:pub.10.1007/bf01157852
6 sg:pub.10.1007/s10440-009-9479-4
7 sg:pub.10.1023/a:1019158230616
8 schema:datePublished 2020-03-24
9 schema:datePublishedReg 2020-03-24
10 schema:description Consider a single server queueing model which is observed over a continuous time interval (0,T], where T is determined by a suitable stopping rule. Let θ be the unknown parameter for the arrival process and θ̂T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat {\theta }_{T}$\end{document} be the maximum likelihood estimator of θ. The main goal of this paper is to obtain a moderate deviation result of the maximum likelihood estimator for the single server queueing model under certain regular conditions.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N281630af98984a8dbfb69e19230af033
15 N8a6a5f6129c549bb95d6c35a0f88fb56
16 sg:journal.1290466
17 schema:keywords arrival process
18 certain regular conditions
19 conditions
20 continuous time interval
21 deviation
22 deviation results
23 estimator
24 goal
25 interval
26 likelihood estimator
27 main goal
28 maximum likelihood estimator
29 model
30 moderate deviation result
31 moderate deviations
32 paper
33 parameters
34 process
35 queue
36 queueing model
37 regular conditions
38 results
39 rules
40 server queue
41 server queueing model
42 single server queue
43 single server queueing model
44 stopping rule
45 suitable stopping rule
46 time interval
47 unknown parameters
48 schema:name Moderate deviation for maximum likelihood estimators from single server queues
49 schema:pagination 2
50 schema:productId Nd80d6c74c9f94c98b5642d500291a947
51 Neaf3c884edbc42dbba35618238e79d41
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125859912
53 https://doi.org/10.1186/s41546-020-00044-z
54 schema:sdDatePublished 2022-05-10T10:24
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nc77f0100663b4dcab4cdd41e7ac5d2a0
57 schema:url https://doi.org/10.1186/s41546-020-00044-z
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N281630af98984a8dbfb69e19230af033 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N8a6a5f6129c549bb95d6c35a0f88fb56 schema:volumeNumber 5
64 rdf:type schema:PublicationVolume
65 Nbd4eed9c575e4294943f789681692888 rdf:first sg:person.07713442513.28
66 rdf:rest rdf:nil
67 Nc77f0100663b4dcab4cdd41e7ac5d2a0 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nd80d6c74c9f94c98b5642d500291a947 schema:name dimensions_id
70 schema:value pub.1125859912
71 rdf:type schema:PropertyValue
72 Neaf3c884edbc42dbba35618238e79d41 schema:name doi
73 schema:value 10.1186/s41546-020-00044-z
74 rdf:type schema:PropertyValue
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
79 schema:name Statistics
80 rdf:type schema:DefinedTerm
81 sg:journal.1290466 schema:issn 2095-9672
82 2367-0126
83 schema:name Probability, Uncertainty and Quantitative Risk
84 schema:publisher American Institute of Mathematical Sciences (AIMS)
85 rdf:type schema:Periodical
86 sg:person.07713442513.28 schema:affiliation grid-institutes:grid.444716.4
87 schema:familyName Singh
88 schema:givenName Saroja Kumar
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07713442513.28
90 rdf:type schema:Person
91 sg:pub.10.1007/978-1-4612-5320-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705063
92 https://doi.org/10.1007/978-1-4612-5320-4
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf01157852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007085053
95 https://doi.org/10.1007/bf01157852
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10440-009-9479-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016112198
98 https://doi.org/10.1007/s10440-009-9479-4
99 rdf:type schema:CreativeWork
100 sg:pub.10.1023/a:1019158230616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040122892
101 https://doi.org/10.1023/a:1019158230616
102 rdf:type schema:CreativeWork
103 grid-institutes:grid.444716.4 schema:alternateName P. G. Department of Statistics, Sambalpur University, Odisha, India
104 schema:name P. G. Department of Statistics, Sambalpur University, Odisha, India
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...