Ontology type: schema:ScholarlyArticle Open Access: True
2019-05-28
AUTHORSTolulope Fadina, Ariel Neufeld, Thorsten Schmidt
ABSTRACTWe develop a one-dimensional notion of affine processes under parameter uncertainty, which we call nonlinear affine processes. This is done as follows: given a set Θ of parameters for the process, we construct a corresponding nonlinear expectation on the path space of continuous processes. By a general dynamic programming principle, we link this nonlinear expectation to a variational form of the Kolmogorov equation, where the generator of a single affine process is replaced by the supremum over all corresponding generators of affine processes with parameters in Θ. This nonlinear affine process yields a tractable model for Knightian uncertainty, especially for modelling interest rates under ambiguity.We then develop an appropriate Itô formula, the respective term-structure equations, and study the nonlinear versions of the Vasiček and the Cox–Ingersoll–Ross (CIR) model. Thereafter, we introduce the nonlinear Vasiček–CIR model. This model is particularly suitable for modelling interest rates when one does not want to restrict the state space a priori and hence this approach solves the modelling issue arising with negative interest rates. More... »
PAGES5
http://scigraph.springernature.com/pub.10.1186/s41546-019-0039-1
DOIhttp://dx.doi.org/10.1186/s41546-019-0039-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1115928174
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematical Stochastics, University of Freiburg, Ernst-Zermelo Str.1, 79104, Freiburg, Germany",
"id": "http://www.grid.ac/institutes/grid.5963.9",
"name": [
"Department of Mathematical Stochastics, University of Freiburg, Ernst-Zermelo Str.1, 79104, Freiburg, Germany"
],
"type": "Organization"
},
"familyName": "Fadina",
"givenName": "Tolulope",
"id": "sg:person.015015147156.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015147156.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nanyang Technological University, Division of Mathematical Sciences, Singapore, Singapore",
"id": "http://www.grid.ac/institutes/grid.59025.3b",
"name": [
"Nanyang Technological University, Division of Mathematical Sciences, Singapore, Singapore"
],
"type": "Organization"
},
"familyName": "Neufeld",
"givenName": "Ariel",
"id": "sg:person.07754060552.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07754060552.01"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France",
"id": "http://www.grid.ac/institutes/grid.11843.3f",
"name": [
"Department of Mathematical Stochastics, University of Freiburg, Ernst-Zermelo Str.1, 79104, Freiburg, Germany",
"Freiburg Institute of Advanced Studies (FRIAS), Freiburg im Breisgau, Germany",
"University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France"
],
"type": "Organization"
},
"familyName": "Schmidt",
"givenName": "Thorsten",
"id": "sg:person.011627570012.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011627570012.28"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-540-70847-6_25",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032023006",
"https://doi.org/10.1007/978-3-540-70847-6_25"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10436-016-0278-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044678204",
"https://doi.org/10.1007/s10436-016-0278-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00780-011-0166-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006121603",
"https://doi.org/10.1007/s00780-011-0166-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11147-011-9069-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005107109",
"https://doi.org/10.1007/s11147-011-9069-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4684-0302-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012201350",
"https://doi.org/10.1007/978-1-4684-0302-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-06400-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030725410",
"https://doi.org/10.1007/978-3-662-06400-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00780-018-0356-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101374137",
"https://doi.org/10.1007/s00780-018-0356-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11579-014-0117-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031922316",
"https://doi.org/10.1007/s11579-014-0117-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-55682-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017800216",
"https://doi.org/10.1007/978-3-642-55682-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s41546-018-0027-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103608752",
"https://doi.org/10.1186/s41546-018-0027-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00030-007-6009-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023247978",
"https://doi.org/10.1007/s00030-007-6009-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-68015-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015586590",
"https://doi.org/10.1007/978-3-540-68015-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13385-013-0070-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043915844",
"https://doi.org/10.1007/s13385-013-0070-z"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-05-28",
"datePublishedReg": "2019-05-28",
"description": "We develop a one-dimensional notion of affine processes under parameter uncertainty, which we call nonlinear affine processes. This is done as follows: given a set \u0398 of parameters for the process, we construct a corresponding nonlinear expectation on the path space of continuous processes. By a general dynamic programming principle, we link this nonlinear expectation to a variational form of the Kolmogorov equation, where the generator of a single affine process is replaced by the supremum over all corresponding generators of affine processes with parameters in \u0398. This nonlinear affine process yields a tractable model for Knightian uncertainty, especially for modelling interest rates under ambiguity.We then develop an appropriate It\u00f4 formula, the respective term-structure equations, and study the nonlinear versions of the Vasi\u010dek and the Cox\u2013Ingersoll\u2013Ross (CIR) model. Thereafter, we introduce the nonlinear Vasi\u010dek\u2013CIR model. This model is particularly suitable for modelling interest rates when one does not want to restrict the state space a priori and hence this approach solves the modelling issue arising with negative interest rates.",
"genre": "article",
"id": "sg:pub.10.1186/s41546-019-0039-1",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.4836977",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1290466",
"issn": [
"2095-9672",
"2367-0126"
],
"name": "Probability, Uncertainty and Quantitative Risk",
"publisher": "American Institute of Mathematical Sciences (AIMS)",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "4"
}
],
"keywords": [
"affine processes",
"nonlinear expectations",
"parameter uncertainties",
"dynamic programming principle",
"term structure equation",
"Kolmogorov equation",
"It\u00f4 formula",
"path space",
"variational form",
"programming principle",
"nonlinear version",
"Cox\u2013Ingersoll",
"state space",
"one-dimensional notion",
"Ross model",
"modelling issues",
"tractable model",
"equations",
"Knightian uncertainty",
"uncertainty",
"Vasi\u010dek",
"space",
"negative interest rates",
"supremum",
"model",
"parameters",
"interest rates",
"generator",
"formula",
"continuous process",
"version",
"principles",
"approach",
"notion",
"process",
"form",
"ambiguity",
"expectations",
"rate",
"issues"
],
"name": "Affine processes under parameter uncertainty",
"pagination": "5",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1115928174"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s41546-019-0039-1"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s41546-019-0039-1",
"https://app.dimensions.ai/details/publication/pub.1115928174"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:35",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_813.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s41546-019-0039-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41546-019-0039-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41546-019-0039-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41546-019-0039-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41546-019-0039-1'
This table displays all metadata directly associated to this object as RDF triples.
174 TRIPLES
22 PREDICATES
78 URIs
57 LITERALS
6 BLANK NODES