Ontology type: schema:ScholarlyArticle Open Access: True
2019-02-11
AUTHORSChristophe Profeta, Frédéric Vrins
ABSTRACTConditional expectations (like, e.g., discounted prices in financial applications) are martingales under an appropriate filtration and probability measure. When the information flow arrives in a punctual way, a reasonable assumption is to suppose the latter to have piecewise constant sample paths between the random times of information updates. Providing a way to find and construct piecewise constant martingales evolving in a connected subset of ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}$\end{document} is the purpose of this paper. After a brief review of possible standard techniques, we propose a construction scheme based on the sampling of latent martingales Z~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {Z}$\end{document} with lazy clocksθ. These θ are time-change processes staying in arrears of the true time but that can synchronize at random times to the real (calendar) clock. This specific choice makes the resulting time-changed process Zt=Z~θt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z_{t}=\tilde {Z}_{\theta _{t}}$\end{document} a martingale (called a lazy martingale) without any assumption on Z~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {Z}$\end{document}, and in most cases, the lazy clock θ is adapted to the filtration of the lazy martingale Z, so that sample paths of Z on [0,T] only requires sample paths of θ,Z~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left (\theta, \tilde {Z}\right)$\end{document} up to T. This would not be the case if the stochastic clock θ could be ahead of the real clock, as is typically the case using standard time-change processes. The proposed approach yields an easy way to construct analytically tractable lazy martingales evolving on (interval of) ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}$\end{document}. More... »
PAGES2
http://scigraph.springernature.com/pub.10.1186/s41546-019-0036-4
DOIhttp://dx.doi.org/10.1186/s41546-019-0036-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112046517
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Universit\u00e9 d\u2019\u00c9vry, \u00c9vry, France",
"id": "http://www.grid.ac/institutes/grid.8390.2",
"name": [
"Universit\u00e9 d\u2019\u00c9vry, \u00c9vry, France"
],
"type": "Organization"
},
"familyName": "Profeta",
"givenName": "Christophe",
"id": "sg:person.01172231533.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172231533.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Louvain Finance Center (LFIN) and Center for Operations Research and Econometrics (CORE), Voie du Roman Pays 34, 1348, Louvain-la-Neuve, Belgium",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Louvain Finance Center (LFIN) and Center for Operations Research and Econometrics (CORE), Voie du Roman Pays 34, 1348, Louvain-la-Neuve, Belgium"
],
"type": "Organization"
},
"familyName": "Vrins",
"givenName": "Fr\u00e9d\u00e9ric",
"id": "sg:person.013426476303.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013426476303.27"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-662-10061-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015705823",
"https://doi.org/10.1007/978-3-662-10061-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-06400-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030725410",
"https://doi.org/10.1007/978-3-662-06400-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-41255-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092764274",
"https://doi.org/10.1007/978-3-319-41255-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0094651",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038639679",
"https://doi.org/10.1007/bfb0094651"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-62226-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092616765",
"https://doi.org/10.1007/978-3-319-62226-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0073831",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029038155",
"https://doi.org/10.1007/bfb0073831"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-4296-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109705765",
"https://doi.org/10.1007/978-1-4757-4296-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-02-11",
"datePublishedReg": "2019-02-11",
"description": "Conditional expectations (like, e.g., discounted prices in financial applications) are martingales under an appropriate filtration and probability measure. When the information flow arrives in a punctual way, a reasonable assumption is to suppose the latter to have piecewise constant sample paths between the random times of information updates. Providing a way to find and construct piecewise constant martingales evolving in a connected subset of \u211d\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathbb {R}$\\end{document} is the purpose of this paper. After a brief review of possible standard techniques, we propose a construction scheme based on the sampling of latent martingales Z~\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\tilde {Z}$\\end{document} with lazy clocks\u03b8. These \u03b8 are time-change processes staying in arrears of the true time but that can synchronize at random times to the real (calendar) clock. This specific choice makes the resulting time-changed process Zt=Z~\u03b8t\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$Z_{t}=\\tilde {Z}_{\\theta _{t}}$\\end{document} a martingale (called a lazy martingale) without any assumption on Z~\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\tilde {Z}$\\end{document}, and in most cases, the lazy clock \u03b8 is adapted to the filtration of the lazy martingale Z, so that sample paths of Z on [0,T] only requires sample paths of \u03b8,Z~\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\left (\\theta, \\tilde {Z}\\right)$\\end{document} up to T. This would not be the case if the stochastic clock \u03b8 could be ahead of the real clock, as is typically the case using standard time-change processes. The proposed approach yields an easy way to construct analytically tractable lazy martingales evolving on (interval of) \u211d\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathbb {R}$\\end{document}.",
"genre": "article",
"id": "sg:pub.10.1186/s41546-019-0036-4",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1290466",
"issn": [
"2095-9672",
"2367-0126"
],
"name": "Probability, Uncertainty and Quantitative Risk",
"publisher": "American Institute of Mathematical Sciences (AIMS)",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "4"
}
],
"keywords": [
"sample paths",
"time-changed process",
"random times",
"real clocks",
"probability measure",
"conditional expectation",
"martingales",
"process Zt",
"specific choice",
"connected subset",
"reasonable assumptions",
"true time",
"construction scheme",
"appropriate filtration",
"assumption",
"path",
"standard techniques",
"information flow",
"easy way",
"scheme",
"brief review",
"flow",
"cases",
"ZT",
"way",
"approach",
"sampling",
"clock",
"time",
"technique",
"process",
"subset",
"information",
"most cases",
"choice",
"punctual way",
"measures",
"expectations",
"purpose",
"filtration",
"arrears",
"review",
"paper"
],
"name": "Piecewise constant martingales and lazy clocks",
"pagination": "2",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112046517"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s41546-019-0036-4"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s41546-019-0036-4",
"https://app.dimensions.ai/details/publication/pub.1112046517"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:36",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_821.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s41546-019-0036-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41546-019-0036-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41546-019-0036-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41546-019-0036-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41546-019-0036-4'
This table displays all metadata directly associated to this object as RDF triples.
139 TRIPLES
22 PREDICATES
75 URIs
60 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1186/s41546-019-0036-4 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0104 |
3 | ″ | schema:author | Nc130a39c6c3c4c60a736854abca3fd05 |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-4757-4296-1 |
5 | ″ | ″ | sg:pub.10.1007/978-3-319-41255-9 |
6 | ″ | ″ | sg:pub.10.1007/978-3-319-62226-2 |
7 | ″ | ″ | sg:pub.10.1007/978-3-662-06400-9 |
8 | ″ | ″ | sg:pub.10.1007/978-3-662-10061-5 |
9 | ″ | ″ | sg:pub.10.1007/bfb0073831 |
10 | ″ | ″ | sg:pub.10.1007/bfb0094651 |
11 | ″ | schema:datePublished | 2019-02-11 |
12 | ″ | schema:datePublishedReg | 2019-02-11 |
13 | ″ | schema:description | Conditional expectations (like, e.g., discounted prices in financial applications) are martingales under an appropriate filtration and probability measure. When the information flow arrives in a punctual way, a reasonable assumption is to suppose the latter to have piecewise constant sample paths between the random times of information updates. Providing a way to find and construct piecewise constant martingales evolving in a connected subset of ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}$\end{document} is the purpose of this paper. After a brief review of possible standard techniques, we propose a construction scheme based on the sampling of latent martingales Z~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {Z}$\end{document} with lazy clocksθ. These θ are time-change processes staying in arrears of the true time but that can synchronize at random times to the real (calendar) clock. This specific choice makes the resulting time-changed process Zt=Z~θt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z_{t}=\tilde {Z}_{\theta _{t}}$\end{document} a martingale (called a lazy martingale) without any assumption on Z~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {Z}$\end{document}, and in most cases, the lazy clock θ is adapted to the filtration of the lazy martingale Z, so that sample paths of Z on [0,T] only requires sample paths of θ,Z~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left (\theta, \tilde {Z}\right)$\end{document} up to T. This would not be the case if the stochastic clock θ could be ahead of the real clock, as is typically the case using standard time-change processes. The proposed approach yields an easy way to construct analytically tractable lazy martingales evolving on (interval of) ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}$\end{document}. |
14 | ″ | schema:genre | article |
15 | ″ | schema:inLanguage | en |
16 | ″ | schema:isAccessibleForFree | true |
17 | ″ | schema:isPartOf | N60b1b47418574dd29059fcccc51041aa |
18 | ″ | ″ | Nfadc10e7e98f45d6b31a00b147e2ff3d |
19 | ″ | ″ | sg:journal.1290466 |
20 | ″ | schema:keywords | ZT |
21 | ″ | ″ | approach |
22 | ″ | ″ | appropriate filtration |
23 | ″ | ″ | arrears |
24 | ″ | ″ | assumption |
25 | ″ | ″ | brief review |
26 | ″ | ″ | cases |
27 | ″ | ″ | choice |
28 | ″ | ″ | clock |
29 | ″ | ″ | conditional expectation |
30 | ″ | ″ | connected subset |
31 | ″ | ″ | construction scheme |
32 | ″ | ″ | easy way |
33 | ″ | ″ | expectations |
34 | ″ | ″ | filtration |
35 | ″ | ″ | flow |
36 | ″ | ″ | information |
37 | ″ | ″ | information flow |
38 | ″ | ″ | martingales |
39 | ″ | ″ | measures |
40 | ″ | ″ | most cases |
41 | ″ | ″ | paper |
42 | ″ | ″ | path |
43 | ″ | ″ | probability measure |
44 | ″ | ″ | process |
45 | ″ | ″ | process Zt |
46 | ″ | ″ | punctual way |
47 | ″ | ″ | purpose |
48 | ″ | ″ | random times |
49 | ″ | ″ | real clocks |
50 | ″ | ″ | reasonable assumptions |
51 | ″ | ″ | review |
52 | ″ | ″ | sample paths |
53 | ″ | ″ | sampling |
54 | ″ | ″ | scheme |
55 | ″ | ″ | specific choice |
56 | ″ | ″ | standard techniques |
57 | ″ | ″ | subset |
58 | ″ | ″ | technique |
59 | ″ | ″ | time |
60 | ″ | ″ | time-changed process |
61 | ″ | ″ | true time |
62 | ″ | ″ | way |
63 | ″ | schema:name | Piecewise constant martingales and lazy clocks |
64 | ″ | schema:pagination | 2 |
65 | ″ | schema:productId | Ne52bbba4d0ba4107aa2a95b2df509bbd |
66 | ″ | ″ | Nf02eaef9b9bd4a89bac95f45d7b2b4b3 |
67 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1112046517 |
68 | ″ | ″ | https://doi.org/10.1186/s41546-019-0036-4 |
69 | ″ | schema:sdDatePublished | 2022-05-20T07:36 |
70 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
71 | ″ | schema:sdPublisher | N9c16c9e74b574d0fa2404e89dd4f06a0 |
72 | ″ | schema:url | https://doi.org/10.1186/s41546-019-0036-4 |
73 | ″ | sgo:license | sg:explorer/license/ |
74 | ″ | sgo:sdDataset | articles |
75 | ″ | rdf:type | schema:ScholarlyArticle |
76 | N60b1b47418574dd29059fcccc51041aa | schema:volumeNumber | 4 |
77 | ″ | rdf:type | schema:PublicationVolume |
78 | N855caf84b20e4955848c545f200a2b3a | rdf:first | sg:person.013426476303.27 |
79 | ″ | rdf:rest | rdf:nil |
80 | N9c16c9e74b574d0fa2404e89dd4f06a0 | schema:name | Springer Nature - SN SciGraph project |
81 | ″ | rdf:type | schema:Organization |
82 | Nc130a39c6c3c4c60a736854abca3fd05 | rdf:first | sg:person.01172231533.18 |
83 | ″ | rdf:rest | N855caf84b20e4955848c545f200a2b3a |
84 | Ne52bbba4d0ba4107aa2a95b2df509bbd | schema:name | doi |
85 | ″ | schema:value | 10.1186/s41546-019-0036-4 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | Nf02eaef9b9bd4a89bac95f45d7b2b4b3 | schema:name | dimensions_id |
88 | ″ | schema:value | pub.1112046517 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | Nfadc10e7e98f45d6b31a00b147e2ff3d | schema:issueNumber | 1 |
91 | ″ | rdf:type | schema:PublicationIssue |
92 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
93 | ″ | schema:name | Mathematical Sciences |
94 | ″ | rdf:type | schema:DefinedTerm |
95 | anzsrc-for:0104 | schema:inDefinedTermSet | anzsrc-for: |
96 | ″ | schema:name | Statistics |
97 | ″ | rdf:type | schema:DefinedTerm |
98 | sg:journal.1290466 | schema:issn | 2095-9672 |
99 | ″ | ″ | 2367-0126 |
100 | ″ | schema:name | Probability, Uncertainty and Quantitative Risk |
101 | ″ | schema:publisher | American Institute of Mathematical Sciences (AIMS) |
102 | ″ | rdf:type | schema:Periodical |
103 | sg:person.01172231533.18 | schema:affiliation | grid-institutes:grid.8390.2 |
104 | ″ | schema:familyName | Profeta |
105 | ″ | schema:givenName | Christophe |
106 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172231533.18 |
107 | ″ | rdf:type | schema:Person |
108 | sg:person.013426476303.27 | schema:affiliation | grid-institutes:None |
109 | ″ | schema:familyName | Vrins |
110 | ″ | schema:givenName | Frédéric |
111 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013426476303.27 |
112 | ″ | rdf:type | schema:Person |
113 | sg:pub.10.1007/978-1-4757-4296-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1109705765 |
114 | ″ | ″ | https://doi.org/10.1007/978-1-4757-4296-1 |
115 | ″ | rdf:type | schema:CreativeWork |
116 | sg:pub.10.1007/978-3-319-41255-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1092764274 |
117 | ″ | ″ | https://doi.org/10.1007/978-3-319-41255-9 |
118 | ″ | rdf:type | schema:CreativeWork |
119 | sg:pub.10.1007/978-3-319-62226-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1092616765 |
120 | ″ | ″ | https://doi.org/10.1007/978-3-319-62226-2 |
121 | ″ | rdf:type | schema:CreativeWork |
122 | sg:pub.10.1007/978-3-662-06400-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030725410 |
123 | ″ | ″ | https://doi.org/10.1007/978-3-662-06400-9 |
124 | ″ | rdf:type | schema:CreativeWork |
125 | sg:pub.10.1007/978-3-662-10061-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015705823 |
126 | ″ | ″ | https://doi.org/10.1007/978-3-662-10061-5 |
127 | ″ | rdf:type | schema:CreativeWork |
128 | sg:pub.10.1007/bfb0073831 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029038155 |
129 | ″ | ″ | https://doi.org/10.1007/bfb0073831 |
130 | ″ | rdf:type | schema:CreativeWork |
131 | sg:pub.10.1007/bfb0094651 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038639679 |
132 | ″ | ″ | https://doi.org/10.1007/bfb0094651 |
133 | ″ | rdf:type | schema:CreativeWork |
134 | grid-institutes:None | schema:alternateName | Louvain Finance Center (LFIN) and Center for Operations Research and Econometrics (CORE), Voie du Roman Pays 34, 1348, Louvain-la-Neuve, Belgium |
135 | ″ | schema:name | Louvain Finance Center (LFIN) and Center for Operations Research and Econometrics (CORE), Voie du Roman Pays 34, 1348, Louvain-la-Neuve, Belgium |
136 | ″ | rdf:type | schema:Organization |
137 | grid-institutes:grid.8390.2 | schema:alternateName | Université d’Évry, Évry, France |
138 | ″ | schema:name | Université d’Évry, Évry, France |
139 | ″ | rdf:type | schema:Organization |