Piecewise constant martingales and lazy clocks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-11

AUTHORS

Christophe Profeta, Frédéric Vrins

ABSTRACT

Conditional expectations (like, e.g., discounted prices in financial applications) are martingales under an appropriate filtration and probability measure. When the information flow arrives in a punctual way, a reasonable assumption is to suppose the latter to have piecewise constant sample paths between the random times of information updates. Providing a way to find and construct piecewise constant martingales evolving in a connected subset of ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}$\end{document} is the purpose of this paper. After a brief review of possible standard techniques, we propose a construction scheme based on the sampling of latent martingales Z~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {Z}$\end{document} with lazy clocksθ. These θ are time-change processes staying in arrears of the true time but that can synchronize at random times to the real (calendar) clock. This specific choice makes the resulting time-changed process Zt=Z~θt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z_{t}=\tilde {Z}_{\theta _{t}}$\end{document} a martingale (called a lazy martingale) without any assumption on Z~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {Z}$\end{document}, and in most cases, the lazy clock θ is adapted to the filtration of the lazy martingale Z, so that sample paths of Z on [0,T] only requires sample paths of θ,Z~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left (\theta, \tilde {Z}\right)$\end{document} up to T. This would not be the case if the stochastic clock θ could be ahead of the real clock, as is typically the case using standard time-change processes. The proposed approach yields an easy way to construct analytically tractable lazy martingales evolving on (interval of) ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}$\end{document}. More... »

PAGES

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s41546-019-0036-4

DOI

http://dx.doi.org/10.1186/s41546-019-0036-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112046517


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 d\u2019\u00c9vry, \u00c9vry, France", 
          "id": "http://www.grid.ac/institutes/grid.8390.2", 
          "name": [
            "Universit\u00e9 d\u2019\u00c9vry, \u00c9vry, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Profeta", 
        "givenName": "Christophe", 
        "id": "sg:person.01172231533.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172231533.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Louvain Finance Center (LFIN) and Center for Operations Research and Econometrics (CORE), Voie du Roman Pays 34, 1348, Louvain-la-Neuve, Belgium", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Louvain Finance Center (LFIN) and Center for Operations Research and Econometrics (CORE), Voie du Roman Pays 34, 1348, Louvain-la-Neuve, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vrins", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "id": "sg:person.013426476303.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013426476303.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-10061-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015705823", 
          "https://doi.org/10.1007/978-3-662-10061-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-06400-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030725410", 
          "https://doi.org/10.1007/978-3-662-06400-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-41255-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092764274", 
          "https://doi.org/10.1007/978-3-319-41255-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0094651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038639679", 
          "https://doi.org/10.1007/bfb0094651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-62226-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092616765", 
          "https://doi.org/10.1007/978-3-319-62226-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0073831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029038155", 
          "https://doi.org/10.1007/bfb0073831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4296-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705765", 
          "https://doi.org/10.1007/978-1-4757-4296-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-11", 
    "datePublishedReg": "2019-02-11", 
    "description": "Conditional expectations (like, e.g., discounted prices in financial applications) are martingales under an appropriate filtration and probability measure. When the information flow arrives in a punctual way, a reasonable assumption is to suppose the latter to have piecewise constant sample paths between the random times of information updates. Providing a way to find and construct piecewise constant martingales evolving in a connected subset of \u211d\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathbb {R}$\\end{document} is the purpose of this paper. After a brief review of possible standard techniques, we propose a construction scheme based on the sampling of latent martingales Z~\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\tilde {Z}$\\end{document} with lazy clocks\u03b8. These \u03b8 are time-change processes staying in arrears of the true time but that can synchronize at random times to the real (calendar) clock. This specific choice makes the resulting time-changed process Zt=Z~\u03b8t\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$Z_{t}=\\tilde {Z}_{\\theta _{t}}$\\end{document} a martingale (called a lazy martingale) without any assumption on Z~\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\tilde {Z}$\\end{document}, and in most cases, the lazy clock \u03b8 is adapted to the filtration of the lazy martingale Z, so that sample paths of Z on [0,T] only requires sample paths of \u03b8,Z~\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\left (\\theta, \\tilde {Z}\\right)$\\end{document} up to T. This would not be the case if the stochastic clock \u03b8 could be ahead of the real clock, as is typically the case using standard time-change processes. The proposed approach yields an easy way to construct analytically tractable lazy martingales evolving on (interval of) \u211d\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathbb {R}$\\end{document}.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s41546-019-0036-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1290466", 
        "issn": [
          "2095-9672", 
          "2367-0126"
        ], 
        "name": "Probability, Uncertainty and Quantitative Risk", 
        "publisher": "American Institute of Mathematical Sciences (AIMS)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "sample paths", 
      "time-changed process", 
      "random times", 
      "real clocks", 
      "probability measure", 
      "conditional expectation", 
      "martingales", 
      "process Zt", 
      "specific choice", 
      "connected subset", 
      "reasonable assumptions", 
      "true time", 
      "construction scheme", 
      "appropriate filtration", 
      "assumption", 
      "path", 
      "standard techniques", 
      "information flow", 
      "easy way", 
      "scheme", 
      "brief review", 
      "flow", 
      "cases", 
      "ZT", 
      "way", 
      "approach", 
      "sampling", 
      "clock", 
      "time", 
      "technique", 
      "process", 
      "subset", 
      "information", 
      "most cases", 
      "choice", 
      "punctual way", 
      "measures", 
      "expectations", 
      "purpose", 
      "filtration", 
      "arrears", 
      "review", 
      "paper"
    ], 
    "name": "Piecewise constant martingales and lazy clocks", 
    "pagination": "2", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112046517"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s41546-019-0036-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s41546-019-0036-4", 
      "https://app.dimensions.ai/details/publication/pub.1112046517"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_821.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s41546-019-0036-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41546-019-0036-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41546-019-0036-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41546-019-0036-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41546-019-0036-4'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      22 PREDICATES      75 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s41546-019-0036-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nc130a39c6c3c4c60a736854abca3fd05
4 schema:citation sg:pub.10.1007/978-1-4757-4296-1
5 sg:pub.10.1007/978-3-319-41255-9
6 sg:pub.10.1007/978-3-319-62226-2
7 sg:pub.10.1007/978-3-662-06400-9
8 sg:pub.10.1007/978-3-662-10061-5
9 sg:pub.10.1007/bfb0073831
10 sg:pub.10.1007/bfb0094651
11 schema:datePublished 2019-02-11
12 schema:datePublishedReg 2019-02-11
13 schema:description Conditional expectations (like, e.g., discounted prices in financial applications) are martingales under an appropriate filtration and probability measure. When the information flow arrives in a punctual way, a reasonable assumption is to suppose the latter to have piecewise constant sample paths between the random times of information updates. Providing a way to find and construct piecewise constant martingales evolving in a connected subset of ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}$\end{document} is the purpose of this paper. After a brief review of possible standard techniques, we propose a construction scheme based on the sampling of latent martingales Z~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {Z}$\end{document} with lazy clocksθ. These θ are time-change processes staying in arrears of the true time but that can synchronize at random times to the real (calendar) clock. This specific choice makes the resulting time-changed process Zt=Z~θt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z_{t}=\tilde {Z}_{\theta _{t}}$\end{document} a martingale (called a lazy martingale) without any assumption on Z~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {Z}$\end{document}, and in most cases, the lazy clock θ is adapted to the filtration of the lazy martingale Z, so that sample paths of Z on [0,T] only requires sample paths of θ,Z~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left (\theta, \tilde {Z}\right)$\end{document} up to T. This would not be the case if the stochastic clock θ could be ahead of the real clock, as is typically the case using standard time-change processes. The proposed approach yields an easy way to construct analytically tractable lazy martingales evolving on (interval of) ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}$\end{document}.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N60b1b47418574dd29059fcccc51041aa
18 Nfadc10e7e98f45d6b31a00b147e2ff3d
19 sg:journal.1290466
20 schema:keywords ZT
21 approach
22 appropriate filtration
23 arrears
24 assumption
25 brief review
26 cases
27 choice
28 clock
29 conditional expectation
30 connected subset
31 construction scheme
32 easy way
33 expectations
34 filtration
35 flow
36 information
37 information flow
38 martingales
39 measures
40 most cases
41 paper
42 path
43 probability measure
44 process
45 process Zt
46 punctual way
47 purpose
48 random times
49 real clocks
50 reasonable assumptions
51 review
52 sample paths
53 sampling
54 scheme
55 specific choice
56 standard techniques
57 subset
58 technique
59 time
60 time-changed process
61 true time
62 way
63 schema:name Piecewise constant martingales and lazy clocks
64 schema:pagination 2
65 schema:productId Ne52bbba4d0ba4107aa2a95b2df509bbd
66 Nf02eaef9b9bd4a89bac95f45d7b2b4b3
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112046517
68 https://doi.org/10.1186/s41546-019-0036-4
69 schema:sdDatePublished 2022-05-20T07:36
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N9c16c9e74b574d0fa2404e89dd4f06a0
72 schema:url https://doi.org/10.1186/s41546-019-0036-4
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N60b1b47418574dd29059fcccc51041aa schema:volumeNumber 4
77 rdf:type schema:PublicationVolume
78 N855caf84b20e4955848c545f200a2b3a rdf:first sg:person.013426476303.27
79 rdf:rest rdf:nil
80 N9c16c9e74b574d0fa2404e89dd4f06a0 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nc130a39c6c3c4c60a736854abca3fd05 rdf:first sg:person.01172231533.18
83 rdf:rest N855caf84b20e4955848c545f200a2b3a
84 Ne52bbba4d0ba4107aa2a95b2df509bbd schema:name doi
85 schema:value 10.1186/s41546-019-0036-4
86 rdf:type schema:PropertyValue
87 Nf02eaef9b9bd4a89bac95f45d7b2b4b3 schema:name dimensions_id
88 schema:value pub.1112046517
89 rdf:type schema:PropertyValue
90 Nfadc10e7e98f45d6b31a00b147e2ff3d schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
93 schema:name Mathematical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
96 schema:name Statistics
97 rdf:type schema:DefinedTerm
98 sg:journal.1290466 schema:issn 2095-9672
99 2367-0126
100 schema:name Probability, Uncertainty and Quantitative Risk
101 schema:publisher American Institute of Mathematical Sciences (AIMS)
102 rdf:type schema:Periodical
103 sg:person.01172231533.18 schema:affiliation grid-institutes:grid.8390.2
104 schema:familyName Profeta
105 schema:givenName Christophe
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172231533.18
107 rdf:type schema:Person
108 sg:person.013426476303.27 schema:affiliation grid-institutes:None
109 schema:familyName Vrins
110 schema:givenName Frédéric
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013426476303.27
112 rdf:type schema:Person
113 sg:pub.10.1007/978-1-4757-4296-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705765
114 https://doi.org/10.1007/978-1-4757-4296-1
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-3-319-41255-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092764274
117 https://doi.org/10.1007/978-3-319-41255-9
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/978-3-319-62226-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092616765
120 https://doi.org/10.1007/978-3-319-62226-2
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/978-3-662-06400-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030725410
123 https://doi.org/10.1007/978-3-662-06400-9
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-3-662-10061-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015705823
126 https://doi.org/10.1007/978-3-662-10061-5
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bfb0073831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029038155
129 https://doi.org/10.1007/bfb0073831
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bfb0094651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038639679
132 https://doi.org/10.1007/bfb0094651
133 rdf:type schema:CreativeWork
134 grid-institutes:None schema:alternateName Louvain Finance Center (LFIN) and Center for Operations Research and Econometrics (CORE), Voie du Roman Pays 34, 1348, Louvain-la-Neuve, Belgium
135 schema:name Louvain Finance Center (LFIN) and Center for Operations Research and Econometrics (CORE), Voie du Roman Pays 34, 1348, Louvain-la-Neuve, Belgium
136 rdf:type schema:Organization
137 grid-institutes:grid.8390.2 schema:alternateName Université d’Évry, Évry, France
138 schema:name Université d’Évry, Évry, France
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...