Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Ying Hu, Shanjian Tang

ABSTRACT

In this paper, we consider the mixed optimal control of a linear stochastic system with a quadratic cost functional, with two controllers—one can choose only deterministic time functions, called the deterministic controller, while the other can choose adapted random processes, called the random controller. The optimal control is shown to exist under suitable assumptions. The optimal control is characterized via a system of fully coupled forward-backward stochastic differential equations (FBSDEs) of mean-field type. We solve the FBSDEs via solutions of two (but decoupled) Riccati equations, and give the respective optimal feedback law for both deterministic and random controllers, using solutions of both Riccati equations. The optimal state satisfies a linear stochastic differential equation (SDE) of mean-field type. Both the singular and infinite time-horizonal cases are also addressed. More... »

PAGES

1

References to SciGraph publications

  • 1999. Stochastic Controls, Hamiltonian Systems and HJB Equations in NONE
  • 1982. Lectures on stochastic control in NONLINEAR FILTERING AND STOCHASTIC CONTROL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x

    DOI

    http://dx.doi.org/10.1186/s41546-018-0035-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111105202


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fudan University", 
              "id": "https://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "Univ Rennes, CNRS, IRMAR - UMR 6625, 35000, Rennes, France", 
                "Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, 200433, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Ying", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fudan University", 
              "id": "https://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, 200433, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Shanjian", 
            "id": "sg:person.07421117151.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421117151.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1013764448", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1466-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013764448", 
              "https://doi.org/10.1007/978-1-4612-1466-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1466-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013764448", 
              "https://doi.org/10.1007/978-1-4612-1466-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.spa.2009.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031565261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0064859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049670837", 
              "https://doi.org/10.1007/bfb0064859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0306044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062842858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0309016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062842963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0314028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062843265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0315001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062843309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0330018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062844346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0363012900372465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062880418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0363012900373756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062880425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0363012901387550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062880499"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "In this paper, we consider the mixed optimal control of a linear stochastic system with a quadratic cost functional, with two controllers\u2014one can choose only deterministic time functions, called the deterministic controller, while the other can choose adapted random processes, called the random controller. The optimal control is shown to exist under suitable assumptions. The optimal control is characterized via a system of fully coupled forward-backward stochastic differential equations (FBSDEs) of mean-field type. We solve the FBSDEs via solutions of two (but decoupled) Riccati equations, and give the respective optimal feedback law for both deterministic and random controllers, using solutions of both Riccati equations. The optimal state satisfies a linear stochastic differential equation (SDE) of mean-field type. Both the singular and infinite time-horizonal cases are also addressed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s41546-018-0035-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1290466", 
            "issn": [
              "2367-0126"
            ], 
            "name": "Probability, Uncertainty and Quantitative Risk", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs", 
        "pagination": "1", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f3cd41b1aa15a95a92af90ad76b8fbdbd08046c5c18d5d49526e8ecd9a9f5eef"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s41546-018-0035-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111105202"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s41546-018-0035-x", 
          "https://app.dimensions.ai/details/publication/pub.1111105202"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000311_0000000311/records_55484_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs41546-018-0035-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    104 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s41546-018-0035-x schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N89a93c4f06624fe1a1312d5a5737e8fd
    4 schema:citation sg:pub.10.1007/978-1-4612-1466-3
    5 sg:pub.10.1007/bfb0064859
    6 https://app.dimensions.ai/details/publication/pub.1013764448
    7 https://doi.org/10.1016/j.spa.2009.05.002
    8 https://doi.org/10.1137/0306044
    9 https://doi.org/10.1137/0309016
    10 https://doi.org/10.1137/0314028
    11 https://doi.org/10.1137/0315001
    12 https://doi.org/10.1137/0330018
    13 https://doi.org/10.1137/s0363012900372465
    14 https://doi.org/10.1137/s0363012900373756
    15 https://doi.org/10.1137/s0363012901387550
    16 schema:datePublished 2019-12
    17 schema:datePublishedReg 2019-12-01
    18 schema:description In this paper, we consider the mixed optimal control of a linear stochastic system with a quadratic cost functional, with two controllers—one can choose only deterministic time functions, called the deterministic controller, while the other can choose adapted random processes, called the random controller. The optimal control is shown to exist under suitable assumptions. The optimal control is characterized via a system of fully coupled forward-backward stochastic differential equations (FBSDEs) of mean-field type. We solve the FBSDEs via solutions of two (but decoupled) Riccati equations, and give the respective optimal feedback law for both deterministic and random controllers, using solutions of both Riccati equations. The optimal state satisfies a linear stochastic differential equation (SDE) of mean-field type. Both the singular and infinite time-horizonal cases are also addressed.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N05833a7fe1c748eab7e3309c44d1a605
    23 N36c4d17f70a545439d370043df2dcb43
    24 sg:journal.1290466
    25 schema:name Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs
    26 schema:pagination 1
    27 schema:productId N216a99cb1a9b414189f90bf61e90769e
    28 N30b005b533cc4adebedb81e7e7bcab27
    29 Nbddf35e94fdf419fa495e5185bfc8cde
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111105202
    31 https://doi.org/10.1186/s41546-018-0035-x
    32 schema:sdDatePublished 2019-04-11T08:35
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher Nd7a455ea5068498580bbe263b999a702
    35 schema:url https://link.springer.com/10.1186%2Fs41546-018-0035-x
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N05833a7fe1c748eab7e3309c44d1a605 schema:issueNumber 1
    40 rdf:type schema:PublicationIssue
    41 N216a99cb1a9b414189f90bf61e90769e schema:name readcube_id
    42 schema:value f3cd41b1aa15a95a92af90ad76b8fbdbd08046c5c18d5d49526e8ecd9a9f5eef
    43 rdf:type schema:PropertyValue
    44 N30b005b533cc4adebedb81e7e7bcab27 schema:name doi
    45 schema:value 10.1186/s41546-018-0035-x
    46 rdf:type schema:PropertyValue
    47 N36c4d17f70a545439d370043df2dcb43 schema:volumeNumber 4
    48 rdf:type schema:PublicationVolume
    49 N842ea47c721e44d2a0500d229853ba17 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
    50 schema:familyName Hu
    51 schema:givenName Ying
    52 rdf:type schema:Person
    53 N89a93c4f06624fe1a1312d5a5737e8fd rdf:first N842ea47c721e44d2a0500d229853ba17
    54 rdf:rest Nd18b510aa1e54375b04a82edaa5fdf18
    55 Nbddf35e94fdf419fa495e5185bfc8cde schema:name dimensions_id
    56 schema:value pub.1111105202
    57 rdf:type schema:PropertyValue
    58 Nd18b510aa1e54375b04a82edaa5fdf18 rdf:first sg:person.07421117151.40
    59 rdf:rest rdf:nil
    60 Nd7a455ea5068498580bbe263b999a702 schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Applied Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1290466 schema:issn 2367-0126
    69 schema:name Probability, Uncertainty and Quantitative Risk
    70 rdf:type schema:Periodical
    71 sg:person.07421117151.40 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
    72 schema:familyName Tang
    73 schema:givenName Shanjian
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421117151.40
    75 rdf:type schema:Person
    76 sg:pub.10.1007/978-1-4612-1466-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013764448
    77 https://doi.org/10.1007/978-1-4612-1466-3
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bfb0064859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049670837
    80 https://doi.org/10.1007/bfb0064859
    81 rdf:type schema:CreativeWork
    82 https://app.dimensions.ai/details/publication/pub.1013764448 schema:CreativeWork
    83 https://doi.org/10.1016/j.spa.2009.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031565261
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1137/0306044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842858
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1137/0309016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842963
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1137/0314028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843265
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1137/0315001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843309
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1137/0330018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844346
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1137/s0363012900372465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880418
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1137/s0363012900373756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880425
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1137/s0363012901387550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880499
    100 rdf:type schema:CreativeWork
    101 https://www.grid.ac/institutes/grid.8547.e schema:alternateName Fudan University
    102 schema:name Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, 200433, Shanghai, China
    103 Univ Rennes, CNRS, IRMAR - UMR 6625, 35000, Rennes, France
    104 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...