Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-04

AUTHORS

Ying Hu, Shanjian Tang

ABSTRACT

In this paper, we consider the mixed optimal control of a linear stochastic system with a quadratic cost functional, with two controllers—one can choose only deterministic time functions, called the deterministic controller, while the other can choose adapted random processes, called the random controller. The optimal control is shown to exist under suitable assumptions. The optimal control is characterized via a system of fully coupled forward-backward stochastic differential equations (FBSDEs) of mean-field type. We solve the FBSDEs via solutions of two (but decoupled) Riccati equations, and give the respective optimal feedback law for both deterministic and random controllers, using solutions of both Riccati equations. The optimal state satisfies a linear stochastic differential equation (SDE) of mean-field type. Both the singular and infinite time-horizonal cases are also addressed. More... »

PAGES

1

References to SciGraph publications

  • 1999. Stochastic Controls, Hamiltonian Systems and HJB Equations in NONE
  • 1982. Lectures on stochastic control in NONLINEAR FILTERING AND STOCHASTIC CONTROL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x

    DOI

    http://dx.doi.org/10.1186/s41546-018-0035-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111105202


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, 200433, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "Univ Rennes, CNRS, IRMAR - UMR 6625, 35000, Rennes, France", 
                "Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, 200433, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Ying", 
            "id": "sg:person.014003613267.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003613267.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, 200433, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, 200433, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Shanjian", 
            "id": "sg:person.07421117151.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421117151.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0064859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049670837", 
              "https://doi.org/10.1007/bfb0064859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1466-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013764448", 
              "https://doi.org/10.1007/978-1-4612-1466-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-04", 
        "datePublishedReg": "2019-01-04", 
        "description": "In this paper, we consider the mixed optimal control of a linear stochastic system with a quadratic cost functional, with two controllers\u2014one can choose only deterministic time functions, called the deterministic controller, while the other can choose adapted random processes, called the random controller. The optimal control is shown to exist under suitable assumptions. The optimal control is characterized via a system of fully coupled forward-backward stochastic differential equations (FBSDEs) of mean-field type. We solve the FBSDEs via solutions of two (but decoupled) Riccati equations, and give the respective optimal feedback law for both deterministic and random controllers, using solutions of both Riccati equations. The optimal state satisfies a linear stochastic differential equation (SDE) of mean-field type. Both the singular and infinite time-horizonal cases are also addressed.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s41546-018-0035-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1290466", 
            "issn": [
              "2095-9672", 
              "2367-0126"
            ], 
            "name": "Probability, Uncertainty and Quantitative Risk", 
            "publisher": "American Institute of Mathematical Sciences (AIMS)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "stochastic differential equations", 
          "mean-field type", 
          "linear stochastic systems", 
          "optimal control", 
          "stochastic systems", 
          "Riccati equation", 
          "quadratic cost", 
          "differential equations", 
          "backward stochastic differential equations", 
          "linear stochastic differential equations", 
          "random controller", 
          "optimal feedback law", 
          "deterministic time functions", 
          "feedback law", 
          "deterministic controller", 
          "suitable assumptions", 
          "random process", 
          "controller", 
          "equations", 
          "state satisfies", 
          "time function", 
          "FBSDEs", 
          "solution", 
          "satisfies", 
          "system", 
          "control", 
          "assumption", 
          "law", 
          "cost", 
          "function", 
          "types", 
          "cases", 
          "process", 
          "paper", 
          "mixed optimal control", 
          "respective optimal feedback law", 
          "optimal state satisfies", 
          "infinite time-horizonal cases", 
          "time-horizonal cases", 
          "random optimal control"
        ], 
        "name": "Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs", 
        "pagination": "1", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111105202"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s41546-018-0035-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s41546-018-0035-x", 
          "https://app.dimensions.ai/details/publication/pub.1111105202"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_798.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s41546-018-0035-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    118 TRIPLES      22 PREDICATES      68 URIs      57 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s41546-018-0035-x schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 anzsrc-for:0104
    4 schema:author Nd44e553293474a9d9f541b77e0ce48e1
    5 schema:citation sg:pub.10.1007/978-1-4612-1466-3
    6 sg:pub.10.1007/bfb0064859
    7 schema:datePublished 2019-01-04
    8 schema:datePublishedReg 2019-01-04
    9 schema:description In this paper, we consider the mixed optimal control of a linear stochastic system with a quadratic cost functional, with two controllers—one can choose only deterministic time functions, called the deterministic controller, while the other can choose adapted random processes, called the random controller. The optimal control is shown to exist under suitable assumptions. The optimal control is characterized via a system of fully coupled forward-backward stochastic differential equations (FBSDEs) of mean-field type. We solve the FBSDEs via solutions of two (but decoupled) Riccati equations, and give the respective optimal feedback law for both deterministic and random controllers, using solutions of both Riccati equations. The optimal state satisfies a linear stochastic differential equation (SDE) of mean-field type. Both the singular and infinite time-horizonal cases are also addressed.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf Na837c72f814c4abea8beb1c1485ef690
    14 Nb7181d1bc8a74f6b9798570c7d0ac0c4
    15 sg:journal.1290466
    16 schema:keywords FBSDEs
    17 Riccati equation
    18 assumption
    19 backward stochastic differential equations
    20 cases
    21 control
    22 controller
    23 cost
    24 deterministic controller
    25 deterministic time functions
    26 differential equations
    27 equations
    28 feedback law
    29 function
    30 infinite time-horizonal cases
    31 law
    32 linear stochastic differential equations
    33 linear stochastic systems
    34 mean-field type
    35 mixed optimal control
    36 optimal control
    37 optimal feedback law
    38 optimal state satisfies
    39 paper
    40 process
    41 quadratic cost
    42 random controller
    43 random optimal control
    44 random process
    45 respective optimal feedback law
    46 satisfies
    47 solution
    48 state satisfies
    49 stochastic differential equations
    50 stochastic systems
    51 suitable assumptions
    52 system
    53 time function
    54 time-horizonal cases
    55 types
    56 schema:name Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs
    57 schema:pagination 1
    58 schema:productId N1efbfa2a147d489cb087e39433c19b28
    59 N72097e41011047969e38a6bf116b937a
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111105202
    61 https://doi.org/10.1186/s41546-018-0035-x
    62 schema:sdDatePublished 2021-11-01T18:34
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher Na5640e919cc74883bd340973c6ad3225
    65 schema:url https://doi.org/10.1186/s41546-018-0035-x
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N1efbfa2a147d489cb087e39433c19b28 schema:name dimensions_id
    70 schema:value pub.1111105202
    71 rdf:type schema:PropertyValue
    72 N72097e41011047969e38a6bf116b937a schema:name doi
    73 schema:value 10.1186/s41546-018-0035-x
    74 rdf:type schema:PropertyValue
    75 Na5640e919cc74883bd340973c6ad3225 schema:name Springer Nature - SN SciGraph project
    76 rdf:type schema:Organization
    77 Na837c72f814c4abea8beb1c1485ef690 schema:issueNumber 1
    78 rdf:type schema:PublicationIssue
    79 Nb7181d1bc8a74f6b9798570c7d0ac0c4 schema:volumeNumber 4
    80 rdf:type schema:PublicationVolume
    81 Nd44e553293474a9d9f541b77e0ce48e1 rdf:first sg:person.014003613267.34
    82 rdf:rest Neb81b2f4fe9d4e63ba8910bd5e8f5dab
    83 Neb81b2f4fe9d4e63ba8910bd5e8f5dab rdf:first sg:person.07421117151.40
    84 rdf:rest rdf:nil
    85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Mathematical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Applied Mathematics
    90 rdf:type schema:DefinedTerm
    91 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Statistics
    93 rdf:type schema:DefinedTerm
    94 sg:journal.1290466 schema:issn 2095-9672
    95 2367-0126
    96 schema:name Probability, Uncertainty and Quantitative Risk
    97 schema:publisher American Institute of Mathematical Sciences (AIMS)
    98 rdf:type schema:Periodical
    99 sg:person.014003613267.34 schema:affiliation grid-institutes:grid.8547.e
    100 schema:familyName Hu
    101 schema:givenName Ying
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003613267.34
    103 rdf:type schema:Person
    104 sg:person.07421117151.40 schema:affiliation grid-institutes:grid.8547.e
    105 schema:familyName Tang
    106 schema:givenName Shanjian
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421117151.40
    108 rdf:type schema:Person
    109 sg:pub.10.1007/978-1-4612-1466-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013764448
    110 https://doi.org/10.1007/978-1-4612-1466-3
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/bfb0064859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049670837
    113 https://doi.org/10.1007/bfb0064859
    114 rdf:type schema:CreativeWork
    115 grid-institutes:grid.8547.e schema:alternateName Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, 200433, Shanghai, China
    116 schema:name Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, 200433, Shanghai, China
    117 Univ Rennes, CNRS, IRMAR - UMR 6625, 35000, Rennes, France
    118 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...