Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Ying Hu, Shanjian Tang

ABSTRACT

In this paper, we consider the mixed optimal control of a linear stochastic system with a quadratic cost functional, with two controllers—one can choose only deterministic time functions, called the deterministic controller, while the other can choose adapted random processes, called the random controller. The optimal control is shown to exist under suitable assumptions. The optimal control is characterized via a system of fully coupled forward-backward stochastic differential equations (FBSDEs) of mean-field type. We solve the FBSDEs via solutions of two (but decoupled) Riccati equations, and give the respective optimal feedback law for both deterministic and random controllers, using solutions of both Riccati equations. The optimal state satisfies a linear stochastic differential equation (SDE) of mean-field type. Both the singular and infinite time-horizonal cases are also addressed. More... »

PAGES

1

References to SciGraph publications

  • 1999. Stochastic Controls, Hamiltonian Systems and HJB Equations in NONE
  • 1982. Lectures on stochastic control in NONLINEAR FILTERING AND STOCHASTIC CONTROL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x

    DOI

    http://dx.doi.org/10.1186/s41546-018-0035-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111105202


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fudan University", 
              "id": "https://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "Univ Rennes, CNRS, IRMAR - UMR 6625, 35000, Rennes, France", 
                "Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, 200433, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Ying", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fudan University", 
              "id": "https://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, 200433, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Shanjian", 
            "id": "sg:person.07421117151.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421117151.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1013764448", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1466-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013764448", 
              "https://doi.org/10.1007/978-1-4612-1466-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1466-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013764448", 
              "https://doi.org/10.1007/978-1-4612-1466-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.spa.2009.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031565261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0064859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049670837", 
              "https://doi.org/10.1007/bfb0064859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0306044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062842858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0309016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062842963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0314028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062843265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0315001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062843309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0330018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062844346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0363012900372465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062880418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0363012900373756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062880425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0363012901387550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062880499"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "In this paper, we consider the mixed optimal control of a linear stochastic system with a quadratic cost functional, with two controllers\u2014one can choose only deterministic time functions, called the deterministic controller, while the other can choose adapted random processes, called the random controller. The optimal control is shown to exist under suitable assumptions. The optimal control is characterized via a system of fully coupled forward-backward stochastic differential equations (FBSDEs) of mean-field type. We solve the FBSDEs via solutions of two (but decoupled) Riccati equations, and give the respective optimal feedback law for both deterministic and random controllers, using solutions of both Riccati equations. The optimal state satisfies a linear stochastic differential equation (SDE) of mean-field type. Both the singular and infinite time-horizonal cases are also addressed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s41546-018-0035-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1290466", 
            "issn": [
              "2367-0126"
            ], 
            "name": "Probability, Uncertainty and Quantitative Risk", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs", 
        "pagination": "1", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f3cd41b1aa15a95a92af90ad76b8fbdbd08046c5c18d5d49526e8ecd9a9f5eef"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s41546-018-0035-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111105202"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s41546-018-0035-x", 
          "https://app.dimensions.ai/details/publication/pub.1111105202"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000311_0000000311/records_55484_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs41546-018-0035-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41546-018-0035-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    104 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s41546-018-0035-x schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Nac38da5ba3aa4aa49b5503f3c566ba9b
    4 schema:citation sg:pub.10.1007/978-1-4612-1466-3
    5 sg:pub.10.1007/bfb0064859
    6 https://app.dimensions.ai/details/publication/pub.1013764448
    7 https://doi.org/10.1016/j.spa.2009.05.002
    8 https://doi.org/10.1137/0306044
    9 https://doi.org/10.1137/0309016
    10 https://doi.org/10.1137/0314028
    11 https://doi.org/10.1137/0315001
    12 https://doi.org/10.1137/0330018
    13 https://doi.org/10.1137/s0363012900372465
    14 https://doi.org/10.1137/s0363012900373756
    15 https://doi.org/10.1137/s0363012901387550
    16 schema:datePublished 2019-12
    17 schema:datePublishedReg 2019-12-01
    18 schema:description In this paper, we consider the mixed optimal control of a linear stochastic system with a quadratic cost functional, with two controllers—one can choose only deterministic time functions, called the deterministic controller, while the other can choose adapted random processes, called the random controller. The optimal control is shown to exist under suitable assumptions. The optimal control is characterized via a system of fully coupled forward-backward stochastic differential equations (FBSDEs) of mean-field type. We solve the FBSDEs via solutions of two (but decoupled) Riccati equations, and give the respective optimal feedback law for both deterministic and random controllers, using solutions of both Riccati equations. The optimal state satisfies a linear stochastic differential equation (SDE) of mean-field type. Both the singular and infinite time-horizonal cases are also addressed.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N9c5bfc4a4b8a439199d43b44f43dcded
    23 Na24ac31e59314b908dd0cef35052c169
    24 sg:journal.1290466
    25 schema:name Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs
    26 schema:pagination 1
    27 schema:productId N001d0621fe04498f92b50734dca9cb23
    28 N040d9cb2a0364892b7fda928cacb4094
    29 N41d43feb81a24c4aa44ae42b9f361149
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111105202
    31 https://doi.org/10.1186/s41546-018-0035-x
    32 schema:sdDatePublished 2019-04-11T08:35
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N9ad182ef6a364b46b9d718d74c0a08bb
    35 schema:url https://link.springer.com/10.1186%2Fs41546-018-0035-x
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N001d0621fe04498f92b50734dca9cb23 schema:name readcube_id
    40 schema:value f3cd41b1aa15a95a92af90ad76b8fbdbd08046c5c18d5d49526e8ecd9a9f5eef
    41 rdf:type schema:PropertyValue
    42 N040d9cb2a0364892b7fda928cacb4094 schema:name doi
    43 schema:value 10.1186/s41546-018-0035-x
    44 rdf:type schema:PropertyValue
    45 N41d43feb81a24c4aa44ae42b9f361149 schema:name dimensions_id
    46 schema:value pub.1111105202
    47 rdf:type schema:PropertyValue
    48 N9ad182ef6a364b46b9d718d74c0a08bb schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N9c5bfc4a4b8a439199d43b44f43dcded schema:issueNumber 1
    51 rdf:type schema:PublicationIssue
    52 Na24ac31e59314b908dd0cef35052c169 schema:volumeNumber 4
    53 rdf:type schema:PublicationVolume
    54 Nac38da5ba3aa4aa49b5503f3c566ba9b rdf:first Nf8e9f8fd83274209a3833731c01a3749
    55 rdf:rest Nc75772f9ed0b480f94a51c2f7bf75a62
    56 Nc75772f9ed0b480f94a51c2f7bf75a62 rdf:first sg:person.07421117151.40
    57 rdf:rest rdf:nil
    58 Nf8e9f8fd83274209a3833731c01a3749 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
    59 schema:familyName Hu
    60 schema:givenName Ying
    61 rdf:type schema:Person
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Applied Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1290466 schema:issn 2367-0126
    69 schema:name Probability, Uncertainty and Quantitative Risk
    70 rdf:type schema:Periodical
    71 sg:person.07421117151.40 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
    72 schema:familyName Tang
    73 schema:givenName Shanjian
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421117151.40
    75 rdf:type schema:Person
    76 sg:pub.10.1007/978-1-4612-1466-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013764448
    77 https://doi.org/10.1007/978-1-4612-1466-3
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bfb0064859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049670837
    80 https://doi.org/10.1007/bfb0064859
    81 rdf:type schema:CreativeWork
    82 https://app.dimensions.ai/details/publication/pub.1013764448 schema:CreativeWork
    83 https://doi.org/10.1016/j.spa.2009.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031565261
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1137/0306044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842858
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1137/0309016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842963
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1137/0314028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843265
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1137/0315001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843309
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1137/0330018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844346
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1137/s0363012900372465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880418
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1137/s0363012900373756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880425
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1137/s0363012901387550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880499
    100 rdf:type schema:CreativeWork
    101 https://www.grid.ac/institutes/grid.8547.e schema:alternateName Fudan University
    102 schema:name Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, 200433, Shanghai, China
    103 Univ Rennes, CNRS, IRMAR - UMR 6625, 35000, Rennes, France
    104 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...