Solderjet bumping packaging technique optimization for the miniaturization of laser devices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

P. Ribes-Pleguezuelo, B. Septriani, S. Zhang, E. Beckert, R. Eberhardt, F. Wyrowski, A. Tünnermann

ABSTRACT

Low-stress soldering techniques can guarantee a minimized input of thermal energy allowing for the design and later assembly of more robust and miniaturized optical devices. However, in order to build miniaturized optical devices, these small-induced stresses produced by soldering techniques have to be investigated to guarantee that the stress-induced birefringence effects do not alter the device optical properties and requirements. An analytical method that relates the stress-induced birefringence of laser components with their corresponding lasing capabilities has been compared to the real induced-stress results created in components packaged using solderjet technology. The main goal was to optimize the optical component packaging by using this low induced-stress soldering technique. The optimization was carried out by assessing components miniaturization while still assuring high robustness of the bond strength without creating a beam depolarization ratio of more than 1%. The outcome of the study showed the possibility of assembling laser optical components down to sizes of around 300 μm, creating a bond strength of 5 N and higher, and a depolarization ratio much lower than the proposed target of 1%. Our results in terms of induced stress agreed with the finite element method result, which would imply correct post-processing laser simulations. This suggested that the solderjet bumping technique could robustly join components down to the laser emission beam size without strongly affecting the optical properties. More... »

PAGES

34

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s41476-017-0063-7

DOI

http://dx.doi.org/10.1186/s41476-017-0063-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092568418


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745, Jena, Germany", 
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ribes-Pleguezuelo", 
        "givenName": "P.", 
        "id": "sg:person.013121126773.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013121126773.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745, Jena, Germany", 
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Septriani", 
        "givenName": "B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "S.", 
        "id": "sg:person.01107734372.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107734372.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Applied Optics and Precision Engineering", 
          "id": "https://www.grid.ac/institutes/grid.418007.a", 
          "name": [
            "Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beckert", 
        "givenName": "E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Applied Optics and Precision Engineering", 
          "id": "https://www.grid.ac/institutes/grid.418007.a", 
          "name": [
            "Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eberhardt", 
        "givenName": "R.", 
        "id": "sg:person.01221164150.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221164150.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wyrowski", 
        "givenName": "F.", 
        "id": "sg:person.01156047572.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156047572.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745, Jena, Germany", 
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00fcnnermann", 
        "givenName": "A.", 
        "id": "sg:person.0577721111.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577721111.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-30437-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004294249", 
          "https://doi.org/10.1007/3-540-30437-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-30437-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004294249", 
          "https://doi.org/10.1007/3-540-30437-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-3992(95)93621-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010458338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.phpro.2016.08.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011108789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160040111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.oe.55.11.116107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036409443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.oe.55.6.065101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044126263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.25.005927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084269010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.56.004566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085539865"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Low-stress soldering techniques can guarantee a minimized input of thermal energy allowing for the design and later assembly of more robust and miniaturized optical devices. However, in order to build miniaturized optical devices, these small-induced stresses produced by soldering techniques have to be investigated to guarantee that the stress-induced birefringence effects do not alter the device optical properties and requirements. An analytical method that relates the stress-induced birefringence of laser components with their corresponding lasing capabilities has been compared to the real induced-stress results created in components packaged using solderjet technology. The main goal was to optimize the optical component packaging by using this low induced-stress soldering technique. The optimization was carried out by assessing components miniaturization while still assuring high robustness of the bond strength without creating a beam depolarization ratio of more than 1%. The outcome of the study showed the possibility of assembling laser optical components down to sizes of around 300 \u03bcm, creating a bond strength of 5 N and higher, and a depolarization ratio much lower than the proposed target of 1%. Our results in terms of induced stress agreed with the finite element method result, which would imply correct post-processing laser simulations. This suggested that the solderjet bumping technique could robustly join components down to the laser emission beam size without strongly affecting the optical properties.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1186/s41476-017-0063-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052702", 
        "issn": [
          "1990-2573"
        ], 
        "name": "Journal of the European Optical Society-Rapid Publications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Solderjet bumping packaging technique optimization for the miniaturization of laser devices", 
    "pagination": "34", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "32a8e28e0724284e645ecb2dc58653c4ac71e7e03ce3bf419c16047b9b7c95c8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s41476-017-0063-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092568418"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s41476-017-0063-7", 
      "https://app.dimensions.ai/details/publication/pub.1092568418"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs41476-017-0063-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41476-017-0063-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41476-017-0063-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41476-017-0063-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41476-017-0063-7'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s41476-017-0063-7 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nef21936ba658419e9361a628f2901021
4 schema:citation sg:pub.10.1007/3-540-30437-1
5 https://doi.org/10.1002/cpa.3160040111
6 https://doi.org/10.1016/0030-3992(95)93621-w
7 https://doi.org/10.1016/j.phpro.2016.08.055
8 https://doi.org/10.1117/1.oe.55.11.116107
9 https://doi.org/10.1117/1.oe.55.6.065101
10 https://doi.org/10.1364/ao.56.004566
11 https://doi.org/10.1364/oe.25.005927
12 schema:datePublished 2017-12
13 schema:datePublishedReg 2017-12-01
14 schema:description Low-stress soldering techniques can guarantee a minimized input of thermal energy allowing for the design and later assembly of more robust and miniaturized optical devices. However, in order to build miniaturized optical devices, these small-induced stresses produced by soldering techniques have to be investigated to guarantee that the stress-induced birefringence effects do not alter the device optical properties and requirements. An analytical method that relates the stress-induced birefringence of laser components with their corresponding lasing capabilities has been compared to the real induced-stress results created in components packaged using solderjet technology. The main goal was to optimize the optical component packaging by using this low induced-stress soldering technique. The optimization was carried out by assessing components miniaturization while still assuring high robustness of the bond strength without creating a beam depolarization ratio of more than 1%. The outcome of the study showed the possibility of assembling laser optical components down to sizes of around 300 μm, creating a bond strength of 5 N and higher, and a depolarization ratio much lower than the proposed target of 1%. Our results in terms of induced stress agreed with the finite element method result, which would imply correct post-processing laser simulations. This suggested that the solderjet bumping technique could robustly join components down to the laser emission beam size without strongly affecting the optical properties.
15 schema:genre non_research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N058c2410ccde435488d44b7a820def98
19 Na1cda563fa3840dfb5645d54fec1e078
20 sg:journal.1052702
21 schema:name Solderjet bumping packaging technique optimization for the miniaturization of laser devices
22 schema:pagination 34
23 schema:productId N181041dd77684c7c8fe25e2ea89d9c92
24 N9cb546cd732e46d29b8822a22abd6d46
25 Nae48d6c1bdf9458687313513a0d41331
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092568418
27 https://doi.org/10.1186/s41476-017-0063-7
28 schema:sdDatePublished 2019-04-10T13:31
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N2f44148a594d4383b118bccad036697b
31 schema:url https://link.springer.com/10.1186%2Fs41476-017-0063-7
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N058c2410ccde435488d44b7a820def98 schema:issueNumber 1
36 rdf:type schema:PublicationIssue
37 N181041dd77684c7c8fe25e2ea89d9c92 schema:name dimensions_id
38 schema:value pub.1092568418
39 rdf:type schema:PropertyValue
40 N2f44148a594d4383b118bccad036697b schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N53f048ef2334498aadd76f15038f77d1 rdf:first Na6378077e4794471af37aee63daef587
43 rdf:rest Nd757fbaa9c124f47b310ac0a8d62d6f0
44 N626687be0bcd4578bc450787120c33ca rdf:first sg:person.0577721111.73
45 rdf:rest rdf:nil
46 N7ba0dae6b7924de58b39f6d238fed668 rdf:first sg:person.01156047572.18
47 rdf:rest N626687be0bcd4578bc450787120c33ca
48 N90926d33dc004e049172cfcd887624b9 rdf:first sg:person.01221164150.95
49 rdf:rest N7ba0dae6b7924de58b39f6d238fed668
50 N9cb546cd732e46d29b8822a22abd6d46 schema:name readcube_id
51 schema:value 32a8e28e0724284e645ecb2dc58653c4ac71e7e03ce3bf419c16047b9b7c95c8
52 rdf:type schema:PropertyValue
53 N9d3b3fc68650425f9add539beafa3411 schema:affiliation https://www.grid.ac/institutes/grid.418007.a
54 schema:familyName Beckert
55 schema:givenName E.
56 rdf:type schema:Person
57 Na1cda563fa3840dfb5645d54fec1e078 schema:volumeNumber 13
58 rdf:type schema:PublicationVolume
59 Na6378077e4794471af37aee63daef587 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
60 schema:familyName Septriani
61 schema:givenName B.
62 rdf:type schema:Person
63 Nae48d6c1bdf9458687313513a0d41331 schema:name doi
64 schema:value 10.1186/s41476-017-0063-7
65 rdf:type schema:PropertyValue
66 Nbcce0959d3f84378a886ed0424c1c468 rdf:first N9d3b3fc68650425f9add539beafa3411
67 rdf:rest N90926d33dc004e049172cfcd887624b9
68 Nd757fbaa9c124f47b310ac0a8d62d6f0 rdf:first sg:person.01107734372.31
69 rdf:rest Nbcce0959d3f84378a886ed0424c1c468
70 Nef21936ba658419e9361a628f2901021 rdf:first sg:person.013121126773.09
71 rdf:rest N53f048ef2334498aadd76f15038f77d1
72 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
73 schema:name Engineering
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
76 schema:name Materials Engineering
77 rdf:type schema:DefinedTerm
78 sg:journal.1052702 schema:issn 1990-2573
79 schema:name Journal of the European Optical Society-Rapid Publications
80 rdf:type schema:Periodical
81 sg:person.01107734372.31 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
82 schema:familyName Zhang
83 schema:givenName S.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107734372.31
85 rdf:type schema:Person
86 sg:person.01156047572.18 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
87 schema:familyName Wyrowski
88 schema:givenName F.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156047572.18
90 rdf:type schema:Person
91 sg:person.01221164150.95 schema:affiliation https://www.grid.ac/institutes/grid.418007.a
92 schema:familyName Eberhardt
93 schema:givenName R.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221164150.95
95 rdf:type schema:Person
96 sg:person.013121126773.09 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
97 schema:familyName Ribes-Pleguezuelo
98 schema:givenName P.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013121126773.09
100 rdf:type schema:Person
101 sg:person.0577721111.73 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
102 schema:familyName Tünnermann
103 schema:givenName A.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577721111.73
105 rdf:type schema:Person
106 sg:pub.10.1007/3-540-30437-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004294249
107 https://doi.org/10.1007/3-540-30437-1
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/cpa.3160040111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042985
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0030-3992(95)93621-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1010458338
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.phpro.2016.08.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011108789
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1117/1.oe.55.11.116107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036409443
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1117/1.oe.55.6.065101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044126263
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1364/ao.56.004566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085539865
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1364/oe.25.005927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084269010
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.418007.a schema:alternateName Fraunhofer Institute for Applied Optics and Precision Engineering
124 schema:name Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745, Jena, Germany
125 rdf:type schema:Organization
126 https://www.grid.ac/institutes/grid.9613.d schema:alternateName Friedrich Schiller University Jena
127 schema:name Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745, Jena, Germany
128 Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743, Jena, Germany
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...