Focusing characteristics of a 4 πparabolic mirror light-matter interface View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Lucas Alber, Martin Fischer, Marianne Bader, Klaus Mantel, Markus Sondermann, Gerd Leuchs

ABSTRACT

Focusing with a 4 π parabolic mirror allows for concentrating light from nearly the complete solid angle, whereas focusing with a single microscope objective limits the angle cone used for focusing to half solid angle at maximum. Increasing the solid angle by using deep parabolic mirrors comes at the cost of adding more complexity to the mirror’s fabrication process and might introduce errors that reduce the focusing quality. To determine these errors, we experimentally examine the focusing properties of a 4 π parabolic mirror that was produced by single-point diamond turning. The properties are characterized with a single 174Yb + ion as a mobile point scatterer. The ion is trapped in a vacuum environment with a movable high optical access Paul trap. We demonstrate an effective focal spot size of 209 nm in lateral and 551 nm in axial direction. Such tight focusing allows us to build an efficient light-matter interface. Our findings agree with numerical simulations incorporating a finite ion temperature and interferometrically measured wavefront aberrations induced by the parabolic mirror. We point at further technological improvements and discuss the general scope of applications of a 4 π parabolic mirror. More... »

PAGES

14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s41476-017-0043-y

DOI

http://dx.doi.org/10.1186/s41476-017-0043-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085099253


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Max-Planck-Institute for the Science of Light, Staudtstr. 2, 91058, Erlangen, Germany", 
            "Department of Physics, Friedrich-Alexander University Erlangen-N\u00fcrnberg (FAU), Staudtstra\u00dfe 7/B2, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alber", 
        "givenName": "Lucas", 
        "id": "sg:person.016367002034.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016367002034.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Max-Planck-Institute for the Science of Light, Staudtstr. 2, 91058, Erlangen, Germany", 
            "Department of Physics, Friedrich-Alexander University Erlangen-N\u00fcrnberg (FAU), Staudtstra\u00dfe 7/B2, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fischer", 
        "givenName": "Martin", 
        "id": "sg:person.014314407054.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014314407054.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Max-Planck-Institute for the Science of Light, Staudtstr. 2, 91058, Erlangen, Germany", 
            "Department of Physics, Friedrich-Alexander University Erlangen-N\u00fcrnberg (FAU), Staudtstra\u00dfe 7/B2, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bader", 
        "givenName": "Marianne", 
        "id": "sg:person.015734760672.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015734760672.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Science of Light", 
          "id": "https://www.grid.ac/institutes/grid.419562.d", 
          "name": [
            "Max-Planck-Institute for the Science of Light, Staudtstr. 2, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mantel", 
        "givenName": "Klaus", 
        "id": "sg:person.01004747531.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004747531.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Max-Planck-Institute for the Science of Light, Staudtstr. 2, 91058, Erlangen, Germany", 
            "Department of Physics, Friedrich-Alexander University Erlangen-N\u00fcrnberg (FAU), Staudtstra\u00dfe 7/B2, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sondermann", 
        "givenName": "Markus", 
        "id": "sg:person.015145557465.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015145557465.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ottawa", 
          "id": "https://www.grid.ac/institutes/grid.28046.38", 
          "name": [
            "Max-Planck-Institute for the Science of Light, Staudtstr. 2, 91058, Erlangen, Germany", 
            "Department of Physics, Friedrich-Alexander University Erlangen-N\u00fcrnberg (FAU), Staudtstra\u00dfe 7/B2, 91058, Erlangen, Germany", 
            "Department of Physics, University of Ottawa, 75 Laurier Avenue East, ON K1N 6N5, Ottawa, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leuchs", 
        "givenName": "Gerd", 
        "id": "sg:person.01336050020.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336050020.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjd/e2012-30293-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000752821", 
          "https://doi.org/10.1140/epjd/e2012-30293-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/86/14007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007417842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008614770", 
          "https://doi.org/10.1038/nphys1311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0030-4018(99)00729-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009035897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.063407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012037108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.063407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012037108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012414281", 
          "https://doi.org/10.1038/nphys812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340.2012.716461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013320269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-011-4870-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015783862", 
          "https://doi.org/10.1007/s00340-011-4870-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-014-5817-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016267493", 
          "https://doi.org/10.1007/s00340-014-5817-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-007-2859-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022528656", 
          "https://doi.org/10.1007/s00340-007-2859-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-007-2859-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022528656", 
          "https://doi.org/10.1007/s00340-007-2859-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1137395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025767446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/713821943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027001885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.093603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030200443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.093603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030200443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2012.336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031617546", 
          "https://doi.org/10.1038/nphoton.2012.336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/713819421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032698562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034459644", 
          "https://doi.org/10.1038/nphys1805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/49/1/015002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036142483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.85.012502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036885168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.85.012502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036885168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1959.0200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036978794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1054660x07070055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040211067", 
          "https://doi.org/10.1134/s1054660x07070055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.797423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043387885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.797423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043387885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/4/043011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045029202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/4/043011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045029202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-005-1887-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046288317", 
          "https://doi.org/10.1007/s00340-005-1887-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.052314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048071525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.052314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048071525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2002-00235-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051760026", 
          "https://doi.org/10.1140/epjd/e2002-00235-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00235a013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054983149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.043431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060510477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.043431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060510477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.58.699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.58.699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2321027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062532641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.20.001003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065170734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.9.000637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065210714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.33.000681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065225894"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Focusing with a 4 \u03c0 parabolic mirror allows for concentrating light from nearly the complete solid angle, whereas focusing with a single microscope objective limits the angle cone used for focusing to half solid angle at maximum. Increasing the solid angle by using deep parabolic mirrors comes at the cost of adding more complexity to the mirror\u2019s fabrication process and might introduce errors that reduce the focusing quality. To determine these errors, we experimentally examine the focusing properties of a 4 \u03c0 parabolic mirror that was produced by single-point diamond turning. The properties are characterized with a single 174Yb + ion as a mobile point scatterer. The ion is trapped in a vacuum environment with a movable high optical access Paul trap. We demonstrate an effective focal spot size of 209 nm in lateral and 551 nm in axial direction. Such tight focusing allows us to build an efficient light-matter interface. Our findings agree with numerical simulations incorporating a finite ion temperature and interferometrically measured wavefront aberrations induced by the parabolic mirror. We point at further technological improvements and discuss the general scope of applications of a 4 \u03c0 parabolic mirror.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s41476-017-0043-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052702", 
        "issn": [
          "1990-2573"
        ], 
        "name": "Journal of the European Optical Society-Rapid Publications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Focusing characteristics of a 4 \u03c0parabolic mirror light-matter interface", 
    "pagination": "14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "36e6c0796587a7cd4769c8474612735ef7758c802c8d58c871146571050adc6a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s41476-017-0043-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085099253"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s41476-017-0043-y", 
      "https://app.dimensions.ai/details/publication/pub.1085099253"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89826_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs41476-017-0043-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41476-017-0043-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41476-017-0043-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41476-017-0043-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41476-017-0043-y'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s41476-017-0043-y schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N7045095edcd74e5287eab592a965a1ed
4 schema:citation sg:pub.10.1007/s00340-005-1887-1
5 sg:pub.10.1007/s00340-007-2859-4
6 sg:pub.10.1007/s00340-011-4870-z
7 sg:pub.10.1007/s00340-014-5817-y
8 sg:pub.10.1038/nphoton.2012.336
9 sg:pub.10.1038/nphys1311
10 sg:pub.10.1038/nphys1805
11 sg:pub.10.1038/nphys812
12 sg:pub.10.1134/s1054660x07070055
13 sg:pub.10.1140/epjd/e2002-00235-7
14 sg:pub.10.1140/epjd/e2012-30293-y
15 https://doi.org/10.1016/s0030-4018(99)00729-4
16 https://doi.org/10.1021/ac00235a013
17 https://doi.org/10.1080/09500340.2012.716461
18 https://doi.org/10.1080/713819421
19 https://doi.org/10.1080/713821943
20 https://doi.org/10.1088/0953-4075/49/1/015002
21 https://doi.org/10.1088/1367-2630/11/4/043011
22 https://doi.org/10.1098/rspa.1959.0200
23 https://doi.org/10.1103/physreva.76.052314
24 https://doi.org/10.1103/physreva.85.012502
25 https://doi.org/10.1103/physreva.86.043431
26 https://doi.org/10.1103/physreva.90.063407
27 https://doi.org/10.1103/physrevlett.100.093603
28 https://doi.org/10.1103/revmodphys.58.699
29 https://doi.org/10.1117/12.797423
30 https://doi.org/10.1126/science.1137395
31 https://doi.org/10.1126/science.2321027
32 https://doi.org/10.1209/0295-5075/86/14007
33 https://doi.org/10.1364/josab.20.001003
34 https://doi.org/10.1364/oe.9.000637
35 https://doi.org/10.1364/ol.33.000681
36 schema:datePublished 2017-12
37 schema:datePublishedReg 2017-12-01
38 schema:description Focusing with a 4 π parabolic mirror allows for concentrating light from nearly the complete solid angle, whereas focusing with a single microscope objective limits the angle cone used for focusing to half solid angle at maximum. Increasing the solid angle by using deep parabolic mirrors comes at the cost of adding more complexity to the mirror’s fabrication process and might introduce errors that reduce the focusing quality. To determine these errors, we experimentally examine the focusing properties of a 4 π parabolic mirror that was produced by single-point diamond turning. The properties are characterized with a single 174Yb + ion as a mobile point scatterer. The ion is trapped in a vacuum environment with a movable high optical access Paul trap. We demonstrate an effective focal spot size of 209 nm in lateral and 551 nm in axial direction. Such tight focusing allows us to build an efficient light-matter interface. Our findings agree with numerical simulations incorporating a finite ion temperature and interferometrically measured wavefront aberrations induced by the parabolic mirror. We point at further technological improvements and discuss the general scope of applications of a 4 π parabolic mirror.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N34434f2a4bf94dda8faaf695d5aede45
43 N7a441c45156a4063afff8643794ae85b
44 sg:journal.1052702
45 schema:name Focusing characteristics of a 4 πparabolic mirror light-matter interface
46 schema:pagination 14
47 schema:productId N1cb4d14e2a024bcc945268b99dd3d015
48 N29b6747a0b7b483dabcbaa01df618a17
49 Nfe2bd9b322724bbc924b2fea2e478ad1
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085099253
51 https://doi.org/10.1186/s41476-017-0043-y
52 schema:sdDatePublished 2019-04-11T10:04
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nff6b20bd498c4ecaa75e10c3e23e3061
55 schema:url https://link.springer.com/10.1186%2Fs41476-017-0043-y
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N04e1a663f204463b80f7f587624048dc rdf:first sg:person.01004747531.90
60 rdf:rest N15234a53b1e04d24a4e129543743b05f
61 N15234a53b1e04d24a4e129543743b05f rdf:first sg:person.015145557465.40
62 rdf:rest N83339451912e4787b6144a59da88f30c
63 N1cb4d14e2a024bcc945268b99dd3d015 schema:name dimensions_id
64 schema:value pub.1085099253
65 rdf:type schema:PropertyValue
66 N29b6747a0b7b483dabcbaa01df618a17 schema:name doi
67 schema:value 10.1186/s41476-017-0043-y
68 rdf:type schema:PropertyValue
69 N34434f2a4bf94dda8faaf695d5aede45 schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 N59c17f2a8f0c43f2822b397ae8d7784e rdf:first sg:person.015734760672.96
72 rdf:rest N04e1a663f204463b80f7f587624048dc
73 N6011b6d3620443538d4549401c6c21c1 rdf:first sg:person.014314407054.50
74 rdf:rest N59c17f2a8f0c43f2822b397ae8d7784e
75 N7045095edcd74e5287eab592a965a1ed rdf:first sg:person.016367002034.00
76 rdf:rest N6011b6d3620443538d4549401c6c21c1
77 N7a441c45156a4063afff8643794ae85b schema:volumeNumber 13
78 rdf:type schema:PublicationVolume
79 N83339451912e4787b6144a59da88f30c rdf:first sg:person.01336050020.20
80 rdf:rest rdf:nil
81 Nfe2bd9b322724bbc924b2fea2e478ad1 schema:name readcube_id
82 schema:value 36e6c0796587a7cd4769c8474612735ef7758c802c8d58c871146571050adc6a
83 rdf:type schema:PropertyValue
84 Nff6b20bd498c4ecaa75e10c3e23e3061 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
87 schema:name Chemical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
90 schema:name Physical Chemistry (incl. Structural)
91 rdf:type schema:DefinedTerm
92 sg:journal.1052702 schema:issn 1990-2573
93 schema:name Journal of the European Optical Society-Rapid Publications
94 rdf:type schema:Periodical
95 sg:person.01004747531.90 schema:affiliation https://www.grid.ac/institutes/grid.419562.d
96 schema:familyName Mantel
97 schema:givenName Klaus
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004747531.90
99 rdf:type schema:Person
100 sg:person.01336050020.20 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
101 schema:familyName Leuchs
102 schema:givenName Gerd
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336050020.20
104 rdf:type schema:Person
105 sg:person.014314407054.50 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
106 schema:familyName Fischer
107 schema:givenName Martin
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014314407054.50
109 rdf:type schema:Person
110 sg:person.015145557465.40 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
111 schema:familyName Sondermann
112 schema:givenName Markus
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015145557465.40
114 rdf:type schema:Person
115 sg:person.015734760672.96 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
116 schema:familyName Bader
117 schema:givenName Marianne
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015734760672.96
119 rdf:type schema:Person
120 sg:person.016367002034.00 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
121 schema:familyName Alber
122 schema:givenName Lucas
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016367002034.00
124 rdf:type schema:Person
125 sg:pub.10.1007/s00340-005-1887-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046288317
126 https://doi.org/10.1007/s00340-005-1887-1
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s00340-007-2859-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022528656
129 https://doi.org/10.1007/s00340-007-2859-4
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00340-011-4870-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1015783862
132 https://doi.org/10.1007/s00340-011-4870-z
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00340-014-5817-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016267493
135 https://doi.org/10.1007/s00340-014-5817-y
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nphoton.2012.336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031617546
138 https://doi.org/10.1038/nphoton.2012.336
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nphys1311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008614770
141 https://doi.org/10.1038/nphys1311
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nphys1805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034459644
144 https://doi.org/10.1038/nphys1805
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nphys812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012414281
147 https://doi.org/10.1038/nphys812
148 rdf:type schema:CreativeWork
149 sg:pub.10.1134/s1054660x07070055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040211067
150 https://doi.org/10.1134/s1054660x07070055
151 rdf:type schema:CreativeWork
152 sg:pub.10.1140/epjd/e2002-00235-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051760026
153 https://doi.org/10.1140/epjd/e2002-00235-7
154 rdf:type schema:CreativeWork
155 sg:pub.10.1140/epjd/e2012-30293-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000752821
156 https://doi.org/10.1140/epjd/e2012-30293-y
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0030-4018(99)00729-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009035897
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/ac00235a013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054983149
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1080/09500340.2012.716461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013320269
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/713819421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032698562
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1080/713821943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027001885
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1088/0953-4075/49/1/015002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036142483
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1088/1367-2630/11/4/043011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045029202
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1098/rspa.1959.0200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036978794
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physreva.76.052314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048071525
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreva.85.012502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036885168
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreva.86.043431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060510477
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physreva.90.063407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012037108
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.100.093603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030200443
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/revmodphys.58.699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839103
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1117/12.797423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043387885
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.1137395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025767446
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.2321027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062532641
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1209/0295-5075/86/14007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007417842
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1364/josab.20.001003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065170734
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1364/oe.9.000637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065210714
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1364/ol.33.000681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065225894
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.28046.38 schema:alternateName University of Ottawa
201 schema:name Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Staudtstraße 7/B2, 91058, Erlangen, Germany
202 Department of Physics, University of Ottawa, 75 Laurier Avenue East, ON K1N 6N5, Ottawa, Canada
203 Max-Planck-Institute for the Science of Light, Staudtstr. 2, 91058, Erlangen, Germany
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.419562.d schema:alternateName Max Planck Institute for the Science of Light
206 schema:name Max-Planck-Institute for the Science of Light, Staudtstr. 2, 91058, Erlangen, Germany
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.5330.5 schema:alternateName University of Erlangen-Nuremberg
209 schema:name Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Staudtstraße 7/B2, 91058, Erlangen, Germany
210 Max-Planck-Institute for the Science of Light, Staudtstr. 2, 91058, Erlangen, Germany
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...