Metabolite profiling with HPLC-ICP-MS as a tool for in vivo characterization of imaging probes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Eszter Boros, Omar R. Pinkhasov, Peter Caravan

ABSTRACT

Background: Current analytical methods for characterizing pharmacokinetic and metabolic properties of positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes are limited. Alternative methods to study tracer metabolism are needed. The study objective was to assess the potential of high performance liquid chromatography - inductively coupled plasma - mass spectrometry (HPLC-ICP-MS) for quantification of molecular probe metabolism and pharmacokinetics using stable isotopes. Methods: Two known peptide-DOTA conjugates were chelated with natGa and natIn. Limit of detection of HPLC-ICP-MS for 69Ga and 115In was determined. Rats were administered 50-150 nmol of Ga- and/or In-labeled probes, blood was serially sampled, and plasma analyzed by HPLC-ICP-MS using both reverse phase and size exclusion chromatography. Results: The limits of detection were 0.16 pmol for 115In and 0.53 pmol for 69Ga. Metabolites as low as 0.001 %ID/g could be detected and transchelation products identified. Simultaneous administration of Ga- and In-labeled probes allowed the determination of pharmacokinetics and metabolism of both probes in a single animal. Conclusions: HPLC-ICP-MS is a robust, sensitive and radiation-free technique to characterize the pharmacokinetics and metabolism of imaging probes. More... »

PAGES

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s41181-017-0037-5

DOI

http://dx.doi.org/10.1186/s41181-017-0037-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100562474

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29503859


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stony Brook University", 
          "id": "https://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, 02129, Charlestown, MA, USA", 
            "Present address: Department of Chemistry, Stony Brook University, 100 Nicolls road, Stony Brook, 11790, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boros", 
        "givenName": "Eszter", 
        "id": "sg:person.0616640271.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616640271.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, 02129, Charlestown, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinkhasov", 
        "givenName": "Omar R.", 
        "id": "sg:person.012406571670.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012406571670.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.32224.35", 
          "name": [
            "A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, 02129, Charlestown, MA, USA", 
            "Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Building 149, Room 2301, 13th Street, Charlestown, 02129, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caravan", 
        "givenName": "Peter", 
        "id": "sg:person.0727346345.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727346345.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2967/jnumed.112.114082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001262202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01270621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004969924", 
          "https://doi.org/10.1007/bf01270621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01270621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004969924", 
          "https://doi.org/10.1007/bf01270621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.113.136275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009093369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm500389b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010800683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13550-016-0204-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012360040", 
          "https://doi.org/10.1186/s13550-016-0204-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13550-016-0204-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012360040", 
          "https://doi.org/10.1186/s13550-016-0204-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2013.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014829727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0dt01595d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017980326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a906320j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020708827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4dt02846e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022149947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2013.11.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025793117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.poly.2006.06.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027197383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.115.160754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051197212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.087700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053184776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac402503m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055004847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac50064a004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055014100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/mp300610s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056213143"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Background: Current analytical methods for characterizing pharmacokinetic and metabolic properties of positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes are limited. Alternative methods to study tracer metabolism are needed. The study objective was to assess the potential of high performance liquid chromatography - inductively coupled plasma - mass spectrometry (HPLC-ICP-MS) for quantification of molecular probe metabolism and pharmacokinetics using stable isotopes.\nMethods: Two known peptide-DOTA conjugates were chelated with natGa and natIn. Limit of detection of HPLC-ICP-MS for 69Ga and 115In was determined. Rats were administered 50-150\u00a0nmol of Ga- and/or In-labeled probes, blood was serially sampled, and plasma analyzed by HPLC-ICP-MS using both reverse phase and size exclusion chromatography.\nResults: The limits of detection were 0.16\u00a0pmol for 115In and 0.53\u00a0pmol for 69Ga. Metabolites as low as 0.001 %ID/g could be detected and transchelation products identified. Simultaneous administration of Ga- and In-labeled probes allowed the determination of pharmacokinetics and metabolism of both probes in a single animal.\nConclusions: HPLC-ICP-MS is a robust, sensitive and radiation-free technique to characterize the pharmacokinetics and metabolism of imaging probes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s41181-017-0037-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4317081", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2543408", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2671427", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1157056", 
        "issn": [
          "2365-421X"
        ], 
        "name": "EJNMMI Radiopharmacy and Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Metabolite profiling with HPLC-ICP-MS as a tool for in vivo characterization of imaging probes", 
    "pagination": "2", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s41181-017-0037-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100562474"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "df350dc5c28e1dd38ac68c3d2ec622cd24877318e660e619b6c4b6007cd4c7f7"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101714628"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29503859"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s41181-017-0037-5", 
      "https://app.dimensions.ai/details/publication/pub.1100562474"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106816_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs41181-017-0037-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41181-017-0037-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41181-017-0037-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41181-017-0037-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41181-017-0037-5'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      45 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s41181-017-0037-5 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author Nd11d57465648404fb1538472e6509e72
4 schema:citation sg:pub.10.1007/bf01270621
5 sg:pub.10.1186/s13550-016-0204-9
6 https://doi.org/10.1016/j.forsciint.2013.11.004
7 https://doi.org/10.1016/j.poly.2006.06.039
8 https://doi.org/10.1016/j.talanta.2013.11.092
9 https://doi.org/10.1021/ac402503m
10 https://doi.org/10.1021/ac50064a004
11 https://doi.org/10.1021/jm500389b
12 https://doi.org/10.1021/mp300610s
13 https://doi.org/10.1039/a906320j
14 https://doi.org/10.1039/c0dt01595d
15 https://doi.org/10.1039/c4dt02846e
16 https://doi.org/10.2967/jnumed.111.087700
17 https://doi.org/10.2967/jnumed.112.114082
18 https://doi.org/10.2967/jnumed.113.136275
19 https://doi.org/10.2967/jnumed.115.160754
20 schema:datePublished 2018-12
21 schema:datePublishedReg 2018-12-01
22 schema:description Background: Current analytical methods for characterizing pharmacokinetic and metabolic properties of positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes are limited. Alternative methods to study tracer metabolism are needed. The study objective was to assess the potential of high performance liquid chromatography - inductively coupled plasma - mass spectrometry (HPLC-ICP-MS) for quantification of molecular probe metabolism and pharmacokinetics using stable isotopes. Methods: Two known peptide-DOTA conjugates were chelated with natGa and natIn. Limit of detection of HPLC-ICP-MS for 69Ga and 115In was determined. Rats were administered 50-150 nmol of Ga- and/or In-labeled probes, blood was serially sampled, and plasma analyzed by HPLC-ICP-MS using both reverse phase and size exclusion chromatography. Results: The limits of detection were 0.16 pmol for 115In and 0.53 pmol for 69Ga. Metabolites as low as 0.001 %ID/g could be detected and transchelation products identified. Simultaneous administration of Ga- and In-labeled probes allowed the determination of pharmacokinetics and metabolism of both probes in a single animal. Conclusions: HPLC-ICP-MS is a robust, sensitive and radiation-free technique to characterize the pharmacokinetics and metabolism of imaging probes.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf Nc02c6f1972b2477ab3118d1d0f6a94a2
27 Nce842106bccd48ffbaa71a3d88614c7c
28 sg:journal.1157056
29 schema:name Metabolite profiling with HPLC-ICP-MS as a tool for in vivo characterization of imaging probes
30 schema:pagination 2
31 schema:productId N516c7fb6a8d043689f6da2b447442a91
32 N5a20e743bd7c4461984f175d8e3992e0
33 Nb51e32de8d194f6d8ca97a25f3f12c4b
34 Nbe3d707e0217403ea6af897639fa88f1
35 Nfc6ac7c114be4b2f8c39e88a9e03c947
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100562474
37 https://doi.org/10.1186/s41181-017-0037-5
38 schema:sdDatePublished 2019-04-16T06:22
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N36905ca533eb475284dde620ce1a6b3f
41 schema:url https://link.springer.com/10.1186%2Fs41181-017-0037-5
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N12c7efecbcfc43819725675793859a9d rdf:first sg:person.012406571670.84
46 rdf:rest Nb873c141e4424f338f137237abcd4076
47 N36905ca533eb475284dde620ce1a6b3f schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N516c7fb6a8d043689f6da2b447442a91 schema:name dimensions_id
50 schema:value pub.1100562474
51 rdf:type schema:PropertyValue
52 N5a20e743bd7c4461984f175d8e3992e0 schema:name nlm_unique_id
53 schema:value 101714628
54 rdf:type schema:PropertyValue
55 Na3354ab1f41745c093ff8d11c7efe3e7 schema:name A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, 02129, Charlestown, MA, USA
56 rdf:type schema:Organization
57 Nb51e32de8d194f6d8ca97a25f3f12c4b schema:name pubmed_id
58 schema:value 29503859
59 rdf:type schema:PropertyValue
60 Nb873c141e4424f338f137237abcd4076 rdf:first sg:person.0727346345.99
61 rdf:rest rdf:nil
62 Nbe3d707e0217403ea6af897639fa88f1 schema:name doi
63 schema:value 10.1186/s41181-017-0037-5
64 rdf:type schema:PropertyValue
65 Nc02c6f1972b2477ab3118d1d0f6a94a2 schema:volumeNumber 3
66 rdf:type schema:PublicationVolume
67 Nce842106bccd48ffbaa71a3d88614c7c schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 Nd11d57465648404fb1538472e6509e72 rdf:first sg:person.0616640271.83
70 rdf:rest N12c7efecbcfc43819725675793859a9d
71 Nfc6ac7c114be4b2f8c39e88a9e03c947 schema:name readcube_id
72 schema:value df350dc5c28e1dd38ac68c3d2ec622cd24877318e660e619b6c4b6007cd4c7f7
73 rdf:type schema:PropertyValue
74 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
75 schema:name Chemical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
78 schema:name Analytical Chemistry
79 rdf:type schema:DefinedTerm
80 sg:grant.2543408 http://pending.schema.org/fundedItem sg:pub.10.1186/s41181-017-0037-5
81 rdf:type schema:MonetaryGrant
82 sg:grant.2671427 http://pending.schema.org/fundedItem sg:pub.10.1186/s41181-017-0037-5
83 rdf:type schema:MonetaryGrant
84 sg:grant.4317081 http://pending.schema.org/fundedItem sg:pub.10.1186/s41181-017-0037-5
85 rdf:type schema:MonetaryGrant
86 sg:journal.1157056 schema:issn 2365-421X
87 schema:name EJNMMI Radiopharmacy and Chemistry
88 rdf:type schema:Periodical
89 sg:person.012406571670.84 schema:affiliation Na3354ab1f41745c093ff8d11c7efe3e7
90 schema:familyName Pinkhasov
91 schema:givenName Omar R.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012406571670.84
93 rdf:type schema:Person
94 sg:person.0616640271.83 schema:affiliation https://www.grid.ac/institutes/grid.36425.36
95 schema:familyName Boros
96 schema:givenName Eszter
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616640271.83
98 rdf:type schema:Person
99 sg:person.0727346345.99 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
100 schema:familyName Caravan
101 schema:givenName Peter
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727346345.99
103 rdf:type schema:Person
104 sg:pub.10.1007/bf01270621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004969924
105 https://doi.org/10.1007/bf01270621
106 rdf:type schema:CreativeWork
107 sg:pub.10.1186/s13550-016-0204-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012360040
108 https://doi.org/10.1186/s13550-016-0204-9
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.forsciint.2013.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014829727
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.poly.2006.06.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027197383
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.talanta.2013.11.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025793117
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1021/ac402503m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055004847
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1021/ac50064a004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055014100
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1021/jm500389b schema:sameAs https://app.dimensions.ai/details/publication/pub.1010800683
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1021/mp300610s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056213143
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1039/a906320j schema:sameAs https://app.dimensions.ai/details/publication/pub.1020708827
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1039/c0dt01595d schema:sameAs https://app.dimensions.ai/details/publication/pub.1017980326
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1039/c4dt02846e schema:sameAs https://app.dimensions.ai/details/publication/pub.1022149947
129 rdf:type schema:CreativeWork
130 https://doi.org/10.2967/jnumed.111.087700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053184776
131 rdf:type schema:CreativeWork
132 https://doi.org/10.2967/jnumed.112.114082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001262202
133 rdf:type schema:CreativeWork
134 https://doi.org/10.2967/jnumed.113.136275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009093369
135 rdf:type schema:CreativeWork
136 https://doi.org/10.2967/jnumed.115.160754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051197212
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.32224.35 schema:alternateName Massachusetts General Hospital
139 schema:name A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, 02129, Charlestown, MA, USA
140 Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Building 149, Room 2301, 13th Street, Charlestown, 02129, Boston, MA, USA
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.36425.36 schema:alternateName Stony Brook University
143 schema:name A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, 02129, Charlestown, MA, USA
144 Present address: Department of Chemistry, Stony Brook University, 100 Nicolls road, Stony Brook, 11790, New York, NY, USA
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...