Comparison of two polysulfone membranes for continuous renal replacement therapy for sepsis: a prospective cross-over study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Hideto Yasuda, Kosuke Sekine, Takayuki Abe, Shinichiro Suzaki, Atsushi Katsumi, Naoshige Harada, Hidenori Higashi, Yuki Kishihara, Hidetaka Suzuki, Toru Takebayashi

ABSTRACT

In Japan, the most commonly used hemofilters for patients with acute kidney injury (AKI) treated with continuous renal replacement therapy (CRRT) are made of polysulfone membranes. The aim of this study was to compare the efficacy of two commercially available polysulfone membranes for the removal of solutes. This single-institution, prospective cross-over study was conducted between December 2010 and January 2012. Two polysulfone membranes, Hemofeel SHG (Toray) and Excelflo AEF (Asahi Kasei Medical), were compared in eight intensive care unit patients (median age, 80 years; seven men) who had severe sepsis that required CRRT and who required vasopressor treatment to maintain their mean blood pressure above 65 mmHg. The primary outcome measure was the efficacy of solute removal, evaluated for high-mobility group protein 1 (HMGB-1) and myoglobin. The main cause of sepsis was abdominal infection (50%); the mortality was 62.5%. Blood clearance of myoglobin in 1 h was significantly greater with SHG (p = 0.02), particularly at 24 h (p = 0.17). Blood creatinine clearance did not differ significantly between the two membranes after 1 h, but SHG demonstrated slightly greater appearance at 24 h. There were no significant differences between the two membranes in the clearance of other solutes including HMGB-1. This preliminary study compared the use of two polysulfone membranes in patients with sepsis requiring CRRT and showed that the polysulfone membrane SHG was capable of removing myoglobin with greater efficacy. More... »

PAGES

6

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s41100-018-0148-9

DOI

http://dx.doi.org/10.1186/s41100-018-0148-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100783183


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Intensive Care Unit, Kameda Medical Center, 929 Higashi-chou, 296-8602, Kamogawa-shi, Chiba, Japan", 
            "Intensive Care Unit, Department of Emergency and Critical Care Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan", 
            "Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yasuda", 
        "givenName": "Hideto", 
        "id": "sg:person.012502707755.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502707755.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kameda Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.414927.d", 
          "name": [
            "Department of Medical Engineer, Kameda Medical Center, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sekine", 
        "givenName": "Kosuke", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412096.8", 
          "name": [
            "Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan", 
            "Biostatistics Unit at Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abe", 
        "givenName": "Takayuki", 
        "id": "sg:person.01200327755.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200327755.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Intensive Care Unit, Department of Emergency and Critical Care Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzaki", 
        "givenName": "Shinichiro", 
        "id": "sg:person.0725171306.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725171306.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Intensive Care Unit, Department of Emergency and Critical Care Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katsumi", 
        "givenName": "Atsushi", 
        "id": "sg:person.0657056106.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657056106.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Intensive Care Unit, Department of Emergency and Critical Care Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harada", 
        "givenName": "Naoshige", 
        "id": "sg:person.010056103275.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010056103275.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Intensive Care Unit, Department of Emergency and Critical Care Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Higashi", 
        "givenName": "Hidenori", 
        "id": "sg:person.010211434417.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010211434417.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Intensive Care Unit, Department of Emergency and Critical Care Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishihara", 
        "givenName": "Yuki", 
        "id": "sg:person.016642531317.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642531317.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Intensive Care Unit, Department of Emergency and Critical Care Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "Hidetaka", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takebayashi", 
        "givenName": "Toru", 
        "id": "sg:person.01344616774.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344616774.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/14651858.cd005016.pub2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002782127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ccm.0b013e318298622e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004085172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ccm.0b013e318298622e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004085172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ccm.0b013e318298622e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004085172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/cc13188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007958964", 
          "https://doi.org/10.1186/cc13188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003246-199206000-00025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011749803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003246-199206000-00025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011749803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrc.2011.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015081035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/13.6.1452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015129177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/gfh987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019741231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000235961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020074175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199705013361807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020318020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/rccm.201504-0781oc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023399360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/gfm916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030304413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00002480-199207000-00128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032070643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00002480-199207000-00128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032070643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.01215-09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033055393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000369155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035277378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000329051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038128452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(06)69111-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041009488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2008.02.296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042970776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ki.1995.448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044484834", 
          "https://doi.org/10.1038/ki.1995.448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1525-1594.1993.tb00627.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052011573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diagmicrobio.2015.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053375801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5414/cnp62021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072832742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082727229", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "In Japan, the most commonly used hemofilters for patients with acute kidney injury (AKI) treated with continuous renal replacement therapy (CRRT) are made of polysulfone membranes. The aim of this study was to compare the efficacy of two commercially available polysulfone membranes for the removal of solutes. This single-institution, prospective cross-over study was conducted between December 2010 and January 2012. Two polysulfone membranes, Hemofeel SHG (Toray) and Excelflo AEF (Asahi Kasei Medical), were compared in eight intensive care unit patients (median age, 80 years; seven men) who had severe sepsis that required CRRT and who required vasopressor treatment to maintain their mean blood pressure above 65 mmHg. The primary outcome measure was the efficacy of solute removal, evaluated for high-mobility group protein 1 (HMGB-1) and myoglobin. The main cause of sepsis was abdominal infection (50%); the mortality was 62.5%. Blood clearance of myoglobin in 1 h was significantly greater with SHG (p = 0.02), particularly at 24 h (p = 0.17). Blood creatinine clearance did not differ significantly between the two membranes after 1 h, but SHG demonstrated slightly greater appearance at 24 h. There were no significant differences between the two membranes in the clearance of other solutes including HMGB-1. This preliminary study compared the use of two polysulfone membranes in patients with sepsis requiring CRRT and showed that the polysulfone membrane SHG was capable of removing myoglobin with greater efficacy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s41100-018-0148-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1151526", 
        "issn": [
          "2059-1381"
        ], 
        "name": "Renal Replacement Therapy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Comparison of two polysulfone membranes for continuous renal replacement therapy for sepsis: a prospective cross-over study", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9d080cda9c050689ddba1eb979f2c93858edb9ea176ae167f15803e6dd4bcc7b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s41100-018-0148-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100783183"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s41100-018-0148-9", 
      "https://app.dimensions.ai/details/publication/pub.1100783183"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99836_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs41100-018-0148-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41100-018-0148-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41100-018-0148-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41100-018-0148-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41100-018-0148-9'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s41100-018-0148-9 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N129d5b7e15874e1ba7d1138b171f52b3
4 schema:citation sg:pub.10.1038/ki.1995.448
5 sg:pub.10.1186/cc13188
6 https://app.dimensions.ai/details/publication/pub.1082727229
7 https://doi.org/10.1002/14651858.cd005016.pub2
8 https://doi.org/10.1016/j.diagmicrobio.2015.01.013
9 https://doi.org/10.1016/j.jcrc.2011.04.005
10 https://doi.org/10.1016/s0140-6736(06)69111-3
11 https://doi.org/10.1053/j.ajkd.2008.02.296
12 https://doi.org/10.1056/nejm199705013361807
13 https://doi.org/10.1093/ndt/13.6.1452
14 https://doi.org/10.1093/ndt/gfh987
15 https://doi.org/10.1093/ndt/gfm916
16 https://doi.org/10.1097/00002480-199207000-00128
17 https://doi.org/10.1097/00003246-199206000-00025
18 https://doi.org/10.1097/ccm.0b013e318298622e
19 https://doi.org/10.1111/j.1525-1594.1993.tb00627.x
20 https://doi.org/10.1128/aac.01215-09
21 https://doi.org/10.1159/000235961
22 https://doi.org/10.1159/000329051
23 https://doi.org/10.1159/000369155
24 https://doi.org/10.1164/rccm.201504-0781oc
25 https://doi.org/10.5414/cnp62021
26 schema:datePublished 2018-12
27 schema:datePublishedReg 2018-12-01
28 schema:description In Japan, the most commonly used hemofilters for patients with acute kidney injury (AKI) treated with continuous renal replacement therapy (CRRT) are made of polysulfone membranes. The aim of this study was to compare the efficacy of two commercially available polysulfone membranes for the removal of solutes. This single-institution, prospective cross-over study was conducted between December 2010 and January 2012. Two polysulfone membranes, Hemofeel SHG (Toray) and Excelflo AEF (Asahi Kasei Medical), were compared in eight intensive care unit patients (median age, 80 years; seven men) who had severe sepsis that required CRRT and who required vasopressor treatment to maintain their mean blood pressure above 65 mmHg. The primary outcome measure was the efficacy of solute removal, evaluated for high-mobility group protein 1 (HMGB-1) and myoglobin. The main cause of sepsis was abdominal infection (50%); the mortality was 62.5%. Blood clearance of myoglobin in 1 h was significantly greater with SHG (p = 0.02), particularly at 24 h (p = 0.17). Blood creatinine clearance did not differ significantly between the two membranes after 1 h, but SHG demonstrated slightly greater appearance at 24 h. There were no significant differences between the two membranes in the clearance of other solutes including HMGB-1. This preliminary study compared the use of two polysulfone membranes in patients with sepsis requiring CRRT and showed that the polysulfone membrane SHG was capable of removing myoglobin with greater efficacy.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N5f2f0e9eda8242dcb0f07145d65bb6c1
33 Nf7bcc1db7393495bb864f982f0fb8c71
34 sg:journal.1151526
35 schema:name Comparison of two polysulfone membranes for continuous renal replacement therapy for sepsis: a prospective cross-over study
36 schema:pagination 6
37 schema:productId N1e6831e855ac48aa99ed89550e0b70b9
38 Nc165bb58a6e947218f50a9da0fcc4c89
39 Ncf95417c0faa462d9d19298c53594f24
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100783183
41 https://doi.org/10.1186/s41100-018-0148-9
42 schema:sdDatePublished 2019-04-11T09:40
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nad35ee5d07e7409380bd235b318026d1
45 schema:url https://link.springer.com/10.1186%2Fs41100-018-0148-9
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N077c7ca6c29c44d8800b041f6cdeb6f2 rdf:first Nd54fbbf8040c40c6ae91801a446cee2a
50 rdf:rest N1d62cf071c9d4bbb908b084b936ea188
51 N129d5b7e15874e1ba7d1138b171f52b3 rdf:first sg:person.012502707755.06
52 rdf:rest Nafa493bfe8e24438a84aeed344a9b8dc
53 N1478d98fa98a4521a154160bd5d10c63 schema:name Intensive Care Unit, Department of Emergency and Critical Care Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan
54 rdf:type schema:Organization
55 N1d62cf071c9d4bbb908b084b936ea188 rdf:first sg:person.01344616774.70
56 rdf:rest rdf:nil
57 N1e6831e855ac48aa99ed89550e0b70b9 schema:name doi
58 schema:value 10.1186/s41100-018-0148-9
59 rdf:type schema:PropertyValue
60 N22122c529660476b99dc32f6ce5af6cb schema:name Intensive Care Unit, Department of Emergency and Critical Care Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan
61 rdf:type schema:Organization
62 N33efc1d257aa42a58dc2d8c3288f3d80 rdf:first sg:person.01200327755.63
63 rdf:rest Nbd9eb84e75a5495d9d7e45af403536ab
64 N398b30af12334a4ba0fcec73d195d8c9 rdf:first sg:person.010056103275.63
65 rdf:rest Nc19623ee65fc44e3bded23c1bf66df51
66 N45f64ab601064c57b363428c0b280605 schema:name Intensive Care Unit, Department of Emergency and Critical Care Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan
67 rdf:type schema:Organization
68 N5c3a9a989f1749d381e0666bfad20df6 rdf:first sg:person.0657056106.36
69 rdf:rest N398b30af12334a4ba0fcec73d195d8c9
70 N5f2f0e9eda8242dcb0f07145d65bb6c1 schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N62346a3f2ee942ada5ee0076037d5ec3 schema:name Intensive Care Unit, Department of Emergency and Critical Care Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan
73 rdf:type schema:Organization
74 Nad35ee5d07e7409380bd235b318026d1 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nafa493bfe8e24438a84aeed344a9b8dc rdf:first Nbbfd3b5564e840ba99ff3f8126026808
77 rdf:rest N33efc1d257aa42a58dc2d8c3288f3d80
78 Nbbfd3b5564e840ba99ff3f8126026808 schema:affiliation https://www.grid.ac/institutes/grid.414927.d
79 schema:familyName Sekine
80 schema:givenName Kosuke
81 rdf:type schema:Person
82 Nbd9eb84e75a5495d9d7e45af403536ab rdf:first sg:person.0725171306.65
83 rdf:rest N5c3a9a989f1749d381e0666bfad20df6
84 Nc165bb58a6e947218f50a9da0fcc4c89 schema:name dimensions_id
85 schema:value pub.1100783183
86 rdf:type schema:PropertyValue
87 Nc19623ee65fc44e3bded23c1bf66df51 rdf:first sg:person.010211434417.97
88 rdf:rest Ne06f537f3f064faab4d7943709f00393
89 Ncf95417c0faa462d9d19298c53594f24 schema:name readcube_id
90 schema:value 9d080cda9c050689ddba1eb979f2c93858edb9ea176ae167f15803e6dd4bcc7b
91 rdf:type schema:PropertyValue
92 Nd036aae096374dd59ca80b9f629065e2 schema:name Intensive Care Unit, Department of Emergency and Critical Care Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan
93 rdf:type schema:Organization
94 Nd54fbbf8040c40c6ae91801a446cee2a schema:affiliation Nd036aae096374dd59ca80b9f629065e2
95 schema:familyName Suzuki
96 schema:givenName Hidetaka
97 rdf:type schema:Person
98 Nd8b06225a33946e3accc0d4af7a6ec4e schema:name Intensive Care Unit, Department of Emergency and Critical Care Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan
99 rdf:type schema:Organization
100 Ne06f537f3f064faab4d7943709f00393 rdf:first sg:person.016642531317.44
101 rdf:rest N077c7ca6c29c44d8800b041f6cdeb6f2
102 Nf7bcc1db7393495bb864f982f0fb8c71 schema:volumeNumber 4
103 rdf:type schema:PublicationVolume
104 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
105 schema:name Medical and Health Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
108 schema:name Clinical Sciences
109 rdf:type schema:DefinedTerm
110 sg:journal.1151526 schema:issn 2059-1381
111 schema:name Renal Replacement Therapy
112 rdf:type schema:Periodical
113 sg:person.010056103275.63 schema:affiliation N62346a3f2ee942ada5ee0076037d5ec3
114 schema:familyName Harada
115 schema:givenName Naoshige
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010056103275.63
117 rdf:type schema:Person
118 sg:person.010211434417.97 schema:affiliation N1478d98fa98a4521a154160bd5d10c63
119 schema:familyName Higashi
120 schema:givenName Hidenori
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010211434417.97
122 rdf:type schema:Person
123 sg:person.01200327755.63 schema:affiliation https://www.grid.ac/institutes/grid.412096.8
124 schema:familyName Abe
125 schema:givenName Takayuki
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200327755.63
127 rdf:type schema:Person
128 sg:person.012502707755.06 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
129 schema:familyName Yasuda
130 schema:givenName Hideto
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502707755.06
132 rdf:type schema:Person
133 sg:person.01344616774.70 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
134 schema:familyName Takebayashi
135 schema:givenName Toru
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344616774.70
137 rdf:type schema:Person
138 sg:person.016642531317.44 schema:affiliation Nd8b06225a33946e3accc0d4af7a6ec4e
139 schema:familyName Kishihara
140 schema:givenName Yuki
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642531317.44
142 rdf:type schema:Person
143 sg:person.0657056106.36 schema:affiliation N45f64ab601064c57b363428c0b280605
144 schema:familyName Katsumi
145 schema:givenName Atsushi
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657056106.36
147 rdf:type schema:Person
148 sg:person.0725171306.65 schema:affiliation N22122c529660476b99dc32f6ce5af6cb
149 schema:familyName Suzaki
150 schema:givenName Shinichiro
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725171306.65
152 rdf:type schema:Person
153 sg:pub.10.1038/ki.1995.448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044484834
154 https://doi.org/10.1038/ki.1995.448
155 rdf:type schema:CreativeWork
156 sg:pub.10.1186/cc13188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007958964
157 https://doi.org/10.1186/cc13188
158 rdf:type schema:CreativeWork
159 https://app.dimensions.ai/details/publication/pub.1082727229 schema:CreativeWork
160 https://doi.org/10.1002/14651858.cd005016.pub2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002782127
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.diagmicrobio.2015.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053375801
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jcrc.2011.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015081035
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0140-6736(06)69111-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041009488
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1053/j.ajkd.2008.02.296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042970776
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1056/nejm199705013361807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020318020
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/ndt/13.6.1452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015129177
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/ndt/gfh987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019741231
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/ndt/gfm916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030304413
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1097/00002480-199207000-00128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032070643
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1097/00003246-199206000-00025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011749803
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1097/ccm.0b013e318298622e schema:sameAs https://app.dimensions.ai/details/publication/pub.1004085172
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1111/j.1525-1594.1993.tb00627.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052011573
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1128/aac.01215-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033055393
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1159/000235961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020074175
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1159/000329051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038128452
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1159/000369155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035277378
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1164/rccm.201504-0781oc schema:sameAs https://app.dimensions.ai/details/publication/pub.1023399360
195 rdf:type schema:CreativeWork
196 https://doi.org/10.5414/cnp62021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072832742
197 rdf:type schema:CreativeWork
198 https://www.grid.ac/institutes/grid.26091.3c schema:alternateName Keio University
199 schema:name Department of Intensive Care Unit, Kameda Medical Center, 929 Higashi-chou, 296-8602, Kamogawa-shi, Chiba, Japan
200 Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
201 Intensive Care Unit, Department of Emergency and Critical Care Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.412096.8 schema:alternateName Keio University Hospital
204 schema:name Biostatistics Unit at Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
205 Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.414927.d schema:alternateName Kameda Medical Center
208 schema:name Department of Medical Engineer, Kameda Medical Center, Chiba, Japan
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...