Construction of a high-density genetic map: genotyping by sequencing (GBS) to map purple seed coat color (Psc) in hulless barley View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Xiaohua Yao, Kunlun Wu, Youhua Yao, Yixiong Bai, Jingxiu Ye, Dezhao Chi

ABSTRACT

Background: Colored hulless barley are more suitable in food processing compared to normal (yellow) varieties because it is rich in bioactive compounds and produces higher extraction pearling fractions. Therefore, seed coat color is an important agronomic trait for the breeding and study of hulless barley. Results: Genotyping-by-sequencing single-nucleotide polymorphism (GBS-SNP) analysis of a doubled haploid (DH) mapping population (Nierumuzha × Kunlun10) was conducted to map the purple seed coat color genes (Psc). A high-density genetic map of hulless barley was constructed, which contains 3662 efficient SNP markers with 1129 bin markers. Seven linkage groups were resolved, which had a total length of 645.56 cM. Chromosome length ranged from 60.21 cM to 127.21 cM, with average marker density of 0.57 cM. A total of five loci accounting for 3.79% to 23.86% of the observed phenotypic variation for Psc were detected using this high-density map. Five structural candidate genes (F3'M, HID, UF3GT, UFGT and 5MAT) and one regulatory factor (Ant1) related to flavonoid or anthocyanin biosynthesis were identified.. Conclusions: Five structural candidate genes and one regulatory factor related to flavonoid or anthocyanin biosynthesis have been identified using a high-density genetic map of hulless barley. This study lays the foundation for map-based cloning of Psc but provides a valuable tool for studying marker-trait associations and its application to marker-assisted breeding of hulless barley. More... »

PAGES

37

References to SciGraph publications

  • 2013-12. Development of SNP markers for genes of the phenylpropanoid pathway and their association to kernel and malting traits in barley in BMC GENETICS
  • 2016-12. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines in BMC GENOMICS
  • 2018-05. Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL in THEORETICAL AND APPLIED GENETICS
  • 2017-12. Identification of QTLs controlling grain protein concentration using a high-density SNP and SSR linkage map in barley (Hordeum vulgare L.) in BMC PLANT BIOLOGY
  • 1993-10. Genetic Control of Flavonoid Biosynthesis in Barley in HEREDITAS
  • 2007-11. Molecular marker development and linkage analysis in three low phytic acid barley (Hordeum vulgare) mutant lines in MOLECULAR BREEDING
  • 2015-12. High-density genetic map construction and gene mapping of pericarp color in wax gourd using specific-locus amplified fragment (SLAF) sequencing in BMC GENOMICS
  • 2012-11. Ant28 gene for proanthocyanidin synthesis encoding the R2R3 MYB domain protein (Hvmyb10) highly affects grain dormancy in barley in EUPHYTICA
  • 1984-01. Location of the proanthocyanidins in the barley grain in CARLSBERG RESEARCH COMMUNICATIONS
  • 2013-03. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis in FUNCTIONAL & INTEGRATIVE GENOMICS
  • 2017-04. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of three plant morphological traits in upland cotton (Gossypium hirsutum L.) in EUPHYTICA
  • 1991-11. Structure of the Hordeum vulgare gene encoding dihydroflavonol-4-reductase and molecular analysis of ant18 mutants blocked in flavonoid synthesis in MOLECULAR GENETICS AND GENOMICS
  • 2014-12. An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley in BMC GENOMICS
  • 2017-12. Construction of a High-Density Genetic Map and Quantitative Trait Locus Mapping in the Manila clam Ruditapes philippinarum in SCIENTIFIC REPORTS
  • 2012-06. Virus-induced silencing of genes encoding LEA protein in Tibetan hulless barley (Hordeum vulgare ssp. vulgare) and their relationship to drought tolerance in MOLECULAR BREEDING
  • 1995. RFLP analysis of resistance to the barley yellow mosaic virus complex in AGRONOMY FOR SUSTAINABLE DEVELOPMENT
  • 2017-02. Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding in PLANTA
  • 2009-12. Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. in EUPHYTICA
  • 2015-12. Genetic analysis and molecular mapping of genes controlling seed coat colour in adzuki bean (Vigna angularis) in EUPHYTICA
  • 2015-02. De novo transcriptome characterization of Lilium ‘Sorbonne’ and key enzymes related to the flavonoid biosynthesis in MOLECULAR GENETICS AND GENOMICS
  • 2016-12. Identification of differentially expressed genes implicated in peel color (red and green) of Dimocarpusconfinis in SPRINGERPLUS
  • Journal

    TITLE

    Hereditas

    ISSUE

    1

    VOLUME

    155

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s41065-018-0072-6

    DOI

    http://dx.doi.org/10.1186/s41065-018-0072-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1109993501

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30473656


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Qinghai University", 
              "id": "https://www.grid.ac/institutes/grid.262246.6", 
              "name": [
                "State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 810016, Xining, China", 
                "Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China", 
                "Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China", 
                "Qinghai Subcenter of National Hulless Barley Improvement, 810016, Xining, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Xiaohua", 
            "id": "sg:person.012341365241.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012341365241.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qinghai University", 
              "id": "https://www.grid.ac/institutes/grid.262246.6", 
              "name": [
                "State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 810016, Xining, China", 
                "Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China", 
                "Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China", 
                "Qinghai Subcenter of National Hulless Barley Improvement, 810016, Xining, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Kunlun", 
            "id": "sg:person.01323610325.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323610325.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qinghai University", 
              "id": "https://www.grid.ac/institutes/grid.262246.6", 
              "name": [
                "State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 810016, Xining, China", 
                "Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China", 
                "Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China", 
                "Qinghai Subcenter of National Hulless Barley Improvement, 810016, Xining, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Youhua", 
            "id": "sg:person.016124647641.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016124647641.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qinghai University", 
              "id": "https://www.grid.ac/institutes/grid.262246.6", 
              "name": [
                "State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 810016, Xining, China", 
                "Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China", 
                "Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China", 
                "Qinghai Subcenter of National Hulless Barley Improvement, 810016, Xining, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bai", 
            "givenName": "Yixiong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qinghai University", 
              "id": "https://www.grid.ac/institutes/grid.262246.6", 
              "name": [
                "State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 810016, Xining, China", 
                "Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ye", 
            "givenName": "Jingxiu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qinghai University", 
              "id": "https://www.grid.ac/institutes/grid.262246.6", 
              "name": [
                "State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 810016, Xining, China", 
                "Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China", 
                "Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China", 
                "Qinghai Subcenter of National Hulless Barley Improvement, 810016, Xining, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chi", 
            "givenName": "Dezhao", 
            "id": "sg:person.015740102531.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015740102531.68"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10681-011-0552-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000017854", 
              "https://doi.org/10.1007/s10681-011-0552-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-014-0919-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000157762", 
              "https://doi.org/10.1007/s00438-014-0919-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1051/agro:19950716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000961395", 
              "https://doi.org/10.1051/agro:19950716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.80.2.483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003424200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00290650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003509896", 
              "https://doi.org/10.1007/bf00290650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/gen-2014-0189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005541821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02913969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009522395", 
              "https://doi.org/10.1007/bf02913969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02913969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009522395", 
              "https://doi.org/10.1007/bf02913969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/pcp/41.4.495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016786167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40064-016-2743-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018003153", 
              "https://doi.org/10.1186/s40064-016-2743-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40064-016-2743-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018003153", 
              "https://doi.org/10.1186/s40064-016-2743-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-2220-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020123063", 
              "https://doi.org/10.1186/s12864-015-2220-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-1809.1943.tb02321.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020384561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1423628112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022083796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0127750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024110197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-007-9094-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026736933", 
              "https://doi.org/10.1007/s11032-007-9094-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.116.026971", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026910226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.116.026971", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026910226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/tpj.13324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028722273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/ijms11020595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030299225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-14-97", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031543699", 
              "https://doi.org/10.1186/1471-2156-14-97"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-011-9633-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033724945", 
              "https://doi.org/10.1007/s11032-011-9633-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10142-012-0301-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038759420", 
              "https://doi.org/10.1007/s10142-012-0301-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1010179107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040150773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0163782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045910286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-016-2605-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046925645", 
              "https://doi.org/10.1007/s00425-016-2605-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-016-2605-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046925645", 
              "https://doi.org/10.1007/s00425-016-2605-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2555-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048004350", 
              "https://doi.org/10.1186/s12864-016-2555-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049667117", 
              "https://doi.org/10.1186/1471-2164-15-104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.114.015438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050643949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.114.015438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050643949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-015-1461-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050773391", 
              "https://doi.org/10.1007/s10681-015-1461-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-015-1461-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050773391", 
              "https://doi.org/10.1007/s10681-015-1461-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0019315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052793955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-009-0006-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053625261", 
              "https://doi.org/10.1007/s10681-009-0006-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-009-0006-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053625261", 
              "https://doi.org/10.1007/s10681-009-0006-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1111/j.1601-5223.1993.00187.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053643837", 
              "https://doi.org/10.1111/j.1601-5223.1993.00187.x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jf0527504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055904581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jf0527504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055904581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jf0606609", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055905100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jf0606609", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055905100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jf0701943", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055906468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jf0701943", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055906468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jf802846x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055925751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jf802846x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055925751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj1953.00021962004500050002x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068983953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-017-1867-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084026291", 
              "https://doi.org/10.1007/s10681-017-1867-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-017-1867-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084026291", 
              "https://doi.org/10.1007/s10681-017-1867-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-00246-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084130382", 
              "https://doi.org/10.1038/s41598-017-00246-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-017-1067-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090597762", 
              "https://doi.org/10.1186/s12870-017-1067-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-017-1067-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090597762", 
              "https://doi.org/10.1186/s12870-017-1067-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-018-3055-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100621418", 
              "https://doi.org/10.1007/s00122-018-3055-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Background: Colored hulless barley are more suitable in food processing compared to normal (yellow) varieties because it is rich in bioactive compounds and produces higher extraction pearling fractions. Therefore, seed coat color is an important agronomic trait for the breeding and study of hulless barley.\nResults: Genotyping-by-sequencing single-nucleotide polymorphism (GBS-SNP) analysis of a doubled haploid (DH) mapping population (Nierumuzha \u00d7 Kunlun10) was conducted to map the purple seed coat color genes (Psc). A high-density genetic map of hulless barley was constructed, which contains 3662 efficient SNP markers with 1129 bin markers. Seven linkage groups were resolved, which had a total length of 645.56\u00a0cM. Chromosome length ranged from 60.21\u00a0cM to 127.21\u00a0cM, with average marker density of 0.57\u00a0cM. A total of five loci accounting for 3.79% to 23.86% of the observed phenotypic variation for Psc were detected using this high-density map. Five structural candidate genes (F3'M, HID, UF3GT, UFGT and 5MAT) and one regulatory factor (Ant1) related to flavonoid or anthocyanin biosynthesis were identified..\nConclusions: Five structural candidate genes and one regulatory factor related to flavonoid or anthocyanin biosynthesis have been identified using a high-density genetic map of hulless barley. This study lays the foundation for map-based cloning of Psc but provides a valuable tool for studying marker-trait associations and its application to marker-assisted breeding of hulless barley.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s41065-018-0072-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1017631", 
            "issn": [
              "0018-0661", 
              "1601-5223"
            ], 
            "name": "Hereditas", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "155"
          }
        ], 
        "name": "Construction of a high-density genetic map: genotyping by sequencing (GBS) to map purple seed coat color (Psc) in hulless barley", 
        "pagination": "37", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "eb34412c39009ab275513f378594e7468e473f687c4af74c128def18abeac708"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30473656"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0374654"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s41065-018-0072-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1109993501"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s41065-018-0072-6", 
          "https://app.dimensions.ai/details/publication/pub.1109993501"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000273_0000000273/records_93989_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs41065-018-0072-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0072-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0072-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0072-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0072-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    249 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s41065-018-0072-6 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N7a7dfbe6fd5241bdb8d3b7e0e29fa496
    4 schema:citation sg:pub.10.1007/bf00290650
    5 sg:pub.10.1007/bf02913969
    6 sg:pub.10.1007/s00122-018-3055-0
    7 sg:pub.10.1007/s00425-016-2605-4
    8 sg:pub.10.1007/s00438-014-0919-0
    9 sg:pub.10.1007/s10142-012-0301-4
    10 sg:pub.10.1007/s10681-009-0006-5
    11 sg:pub.10.1007/s10681-011-0552-5
    12 sg:pub.10.1007/s10681-015-1461-9
    13 sg:pub.10.1007/s10681-017-1867-7
    14 sg:pub.10.1007/s11032-007-9094-x
    15 sg:pub.10.1007/s11032-011-9633-3
    16 sg:pub.10.1038/s41598-017-00246-0
    17 sg:pub.10.1051/agro:19950716
    18 sg:pub.10.1111/j.1601-5223.1993.00187.x
    19 sg:pub.10.1186/1471-2156-14-97
    20 sg:pub.10.1186/1471-2164-15-104
    21 sg:pub.10.1186/s12864-015-2220-y
    22 sg:pub.10.1186/s12864-016-2555-z
    23 sg:pub.10.1186/s12870-017-1067-6
    24 sg:pub.10.1186/s40064-016-2743-y
    25 https://doi.org/10.1021/jf0527504
    26 https://doi.org/10.1021/jf0606609
    27 https://doi.org/10.1021/jf0701943
    28 https://doi.org/10.1021/jf802846x
    29 https://doi.org/10.1073/pnas.1010179107
    30 https://doi.org/10.1073/pnas.1423628112
    31 https://doi.org/10.1093/bioinformatics/btp324
    32 https://doi.org/10.1093/bioinformatics/btp352
    33 https://doi.org/10.1093/pcp/41.4.495
    34 https://doi.org/10.1104/pp.80.2.483
    35 https://doi.org/10.1111/j.1469-1809.1943.tb02321.x
    36 https://doi.org/10.1111/tpj.13324
    37 https://doi.org/10.1139/gen-2014-0189
    38 https://doi.org/10.1371/journal.pone.0019315
    39 https://doi.org/10.1371/journal.pone.0127750
    40 https://doi.org/10.1371/journal.pone.0163782
    41 https://doi.org/10.1534/g3.114.015438
    42 https://doi.org/10.1534/g3.116.026971
    43 https://doi.org/10.2134/agronj1953.00021962004500050002x
    44 https://doi.org/10.3390/ijms11020595
    45 schema:datePublished 2018-12
    46 schema:datePublishedReg 2018-12-01
    47 schema:description Background: Colored hulless barley are more suitable in food processing compared to normal (yellow) varieties because it is rich in bioactive compounds and produces higher extraction pearling fractions. Therefore, seed coat color is an important agronomic trait for the breeding and study of hulless barley. Results: Genotyping-by-sequencing single-nucleotide polymorphism (GBS-SNP) analysis of a doubled haploid (DH) mapping population (Nierumuzha × Kunlun10) was conducted to map the purple seed coat color genes (Psc). A high-density genetic map of hulless barley was constructed, which contains 3662 efficient SNP markers with 1129 bin markers. Seven linkage groups were resolved, which had a total length of 645.56 cM. Chromosome length ranged from 60.21 cM to 127.21 cM, with average marker density of 0.57 cM. A total of five loci accounting for 3.79% to 23.86% of the observed phenotypic variation for Psc were detected using this high-density map. Five structural candidate genes (F3'M, HID, UF3GT, UFGT and 5MAT) and one regulatory factor (Ant1) related to flavonoid or anthocyanin biosynthesis were identified.. Conclusions: Five structural candidate genes and one regulatory factor related to flavonoid or anthocyanin biosynthesis have been identified using a high-density genetic map of hulless barley. This study lays the foundation for map-based cloning of Psc but provides a valuable tool for studying marker-trait associations and its application to marker-assisted breeding of hulless barley.
    48 schema:genre research_article
    49 schema:inLanguage en
    50 schema:isAccessibleForFree true
    51 schema:isPartOf Nce6a5324931a44e1b4f018a178e6cf52
    52 Nf510303f5db94bc580dcf3ced52f5ef6
    53 sg:journal.1017631
    54 schema:name Construction of a high-density genetic map: genotyping by sequencing (GBS) to map purple seed coat color (Psc) in hulless barley
    55 schema:pagination 37
    56 schema:productId N033aecbc333f44f89069c7ee419b2759
    57 N15975188bbb5421f9d979ac304f489f9
    58 N37eef45ea30d408a9cc59d4f448069af
    59 Ndf15b1e44cbd4c1f95fb04cb5d297e50
    60 Nfd9c5afccc00490cb3868190333ae5c9
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109993501
    62 https://doi.org/10.1186/s41065-018-0072-6
    63 schema:sdDatePublished 2019-04-11T08:13
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher Nd382c27130a14fa2a27a5996a9b3888d
    66 schema:url https://link.springer.com/10.1186%2Fs41065-018-0072-6
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N033aecbc333f44f89069c7ee419b2759 schema:name doi
    71 schema:value 10.1186/s41065-018-0072-6
    72 rdf:type schema:PropertyValue
    73 N15975188bbb5421f9d979ac304f489f9 schema:name nlm_unique_id
    74 schema:value 0374654
    75 rdf:type schema:PropertyValue
    76 N20fe45c0e6364235813f38dd1443a512 rdf:first Nafbca38a05a842a69d84af492aa7f0f3
    77 rdf:rest N91a79f6729fe46258711fe9bc77f33e9
    78 N2a1ab00de8534c5e861e2a4898e2d2fa rdf:first sg:person.01323610325.41
    79 rdf:rest Nfdfc6744abf647b4a44380d6952761b0
    80 N37eef45ea30d408a9cc59d4f448069af schema:name dimensions_id
    81 schema:value pub.1109993501
    82 rdf:type schema:PropertyValue
    83 N7a7dfbe6fd5241bdb8d3b7e0e29fa496 rdf:first sg:person.012341365241.53
    84 rdf:rest N2a1ab00de8534c5e861e2a4898e2d2fa
    85 N91a79f6729fe46258711fe9bc77f33e9 rdf:first Ndf326c72fd1242c4b06218621d929683
    86 rdf:rest Nef33cc65c0ca487c93cfb56216cbe510
    87 Nafbca38a05a842a69d84af492aa7f0f3 schema:affiliation https://www.grid.ac/institutes/grid.262246.6
    88 schema:familyName Bai
    89 schema:givenName Yixiong
    90 rdf:type schema:Person
    91 Nce6a5324931a44e1b4f018a178e6cf52 schema:volumeNumber 155
    92 rdf:type schema:PublicationVolume
    93 Nd382c27130a14fa2a27a5996a9b3888d schema:name Springer Nature - SN SciGraph project
    94 rdf:type schema:Organization
    95 Ndf15b1e44cbd4c1f95fb04cb5d297e50 schema:name pubmed_id
    96 schema:value 30473656
    97 rdf:type schema:PropertyValue
    98 Ndf326c72fd1242c4b06218621d929683 schema:affiliation https://www.grid.ac/institutes/grid.262246.6
    99 schema:familyName Ye
    100 schema:givenName Jingxiu
    101 rdf:type schema:Person
    102 Nef33cc65c0ca487c93cfb56216cbe510 rdf:first sg:person.015740102531.68
    103 rdf:rest rdf:nil
    104 Nf510303f5db94bc580dcf3ced52f5ef6 schema:issueNumber 1
    105 rdf:type schema:PublicationIssue
    106 Nfd9c5afccc00490cb3868190333ae5c9 schema:name readcube_id
    107 schema:value eb34412c39009ab275513f378594e7468e473f687c4af74c128def18abeac708
    108 rdf:type schema:PropertyValue
    109 Nfdfc6744abf647b4a44380d6952761b0 rdf:first sg:person.016124647641.87
    110 rdf:rest N20fe45c0e6364235813f38dd1443a512
    111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Biological Sciences
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Genetics
    116 rdf:type schema:DefinedTerm
    117 sg:journal.1017631 schema:issn 0018-0661
    118 1601-5223
    119 schema:name Hereditas
    120 rdf:type schema:Periodical
    121 sg:person.012341365241.53 schema:affiliation https://www.grid.ac/institutes/grid.262246.6
    122 schema:familyName Yao
    123 schema:givenName Xiaohua
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012341365241.53
    125 rdf:type schema:Person
    126 sg:person.01323610325.41 schema:affiliation https://www.grid.ac/institutes/grid.262246.6
    127 schema:familyName Wu
    128 schema:givenName Kunlun
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323610325.41
    130 rdf:type schema:Person
    131 sg:person.015740102531.68 schema:affiliation https://www.grid.ac/institutes/grid.262246.6
    132 schema:familyName Chi
    133 schema:givenName Dezhao
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015740102531.68
    135 rdf:type schema:Person
    136 sg:person.016124647641.87 schema:affiliation https://www.grid.ac/institutes/grid.262246.6
    137 schema:familyName Yao
    138 schema:givenName Youhua
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016124647641.87
    140 rdf:type schema:Person
    141 sg:pub.10.1007/bf00290650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003509896
    142 https://doi.org/10.1007/bf00290650
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/bf02913969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009522395
    145 https://doi.org/10.1007/bf02913969
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s00122-018-3055-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100621418
    148 https://doi.org/10.1007/s00122-018-3055-0
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s00425-016-2605-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046925645
    151 https://doi.org/10.1007/s00425-016-2605-4
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s00438-014-0919-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000157762
    154 https://doi.org/10.1007/s00438-014-0919-0
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s10142-012-0301-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038759420
    157 https://doi.org/10.1007/s10142-012-0301-4
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s10681-009-0006-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053625261
    160 https://doi.org/10.1007/s10681-009-0006-5
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s10681-011-0552-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000017854
    163 https://doi.org/10.1007/s10681-011-0552-5
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s10681-015-1461-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050773391
    166 https://doi.org/10.1007/s10681-015-1461-9
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s10681-017-1867-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084026291
    169 https://doi.org/10.1007/s10681-017-1867-7
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s11032-007-9094-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026736933
    172 https://doi.org/10.1007/s11032-007-9094-x
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s11032-011-9633-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033724945
    175 https://doi.org/10.1007/s11032-011-9633-3
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/s41598-017-00246-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084130382
    178 https://doi.org/10.1038/s41598-017-00246-0
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1051/agro:19950716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000961395
    181 https://doi.org/10.1051/agro:19950716
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1111/j.1601-5223.1993.00187.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053643837
    184 https://doi.org/10.1111/j.1601-5223.1993.00187.x
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1186/1471-2156-14-97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031543699
    187 https://doi.org/10.1186/1471-2156-14-97
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1186/1471-2164-15-104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049667117
    190 https://doi.org/10.1186/1471-2164-15-104
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1186/s12864-015-2220-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020123063
    193 https://doi.org/10.1186/s12864-015-2220-y
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1186/s12864-016-2555-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048004350
    196 https://doi.org/10.1186/s12864-016-2555-z
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1186/s12870-017-1067-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090597762
    199 https://doi.org/10.1186/s12870-017-1067-6
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1186/s40064-016-2743-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018003153
    202 https://doi.org/10.1186/s40064-016-2743-y
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1021/jf0527504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055904581
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1021/jf0606609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055905100
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1021/jf0701943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055906468
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1021/jf802846x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055925751
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1073/pnas.1010179107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040150773
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1073/pnas.1423628112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022083796
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1093/pcp/41.4.495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016786167
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1104/pp.80.2.483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003424200
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1111/j.1469-1809.1943.tb02321.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020384561
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1111/tpj.13324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028722273
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1139/gen-2014-0189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005541821
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1371/journal.pone.0019315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052793955
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1371/journal.pone.0127750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024110197
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1371/journal.pone.0163782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045910286
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1534/g3.114.015438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050643949
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1534/g3.116.026971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026910226
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.2134/agronj1953.00021962004500050002x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068983953
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.3390/ijms11020595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030299225
    243 rdf:type schema:CreativeWork
    244 https://www.grid.ac/institutes/grid.262246.6 schema:alternateName Qinghai University
    245 schema:name Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China
    246 Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China
    247 Qinghai Subcenter of National Hulless Barley Improvement, 810016, Xining, China
    248 State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 810016, Xining, China
    249 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...