Long-read sequencing identified a causal structural variant in an exome-negative case and enabled preimplantation genetic diagnosis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Hefan Miao, Jiapeng Zhou, Qi Yang, Fan Liang, Depeng Wang, Na Ma, Bodi Gao, Juan Du, Ge Lin, Kai Wang, Qianjun Zhang

ABSTRACT

Background: For a proportion of individuals judged clinically to have a recessive Mendelian disease, only one heterozygous pathogenic variant can be found from clinical whole exome sequencing (WES), posing a challenge to genetic diagnosis and genetic counseling. One possible reason is the limited ability to detect disease causal structural variants (SVs) from short reads sequencing technologies. Long reads sequencing can produce longer reads (typically 1000 bp or longer), therefore offering greatly improved ability to detect SVs that may be missed by short-read sequencing. Results: Here we describe a case study, where WES identified only one heterozygous pathogenic variant for an individual suspected to have glycogen storage disease type Ia (GSD-Ia), which is an autosomal recessive disease caused by bi-allelic mutations in the G6PC gene. Through Nanopore long-read whole-genome sequencing, we identified a 7.1 kb deletion covering two exons on the other allele, suggesting that complex structural variants (SVs) may explain a fraction of cases when the second pathogenic allele is missing from WES on recessive diseases. Both breakpoints of the deletion are within Alu elements, and we designed Sanger sequencing and quantitative PCR assays based on the breakpoints for preimplantation genetic diagnosis (PGD) for the family planning on another child. Four embryos were obtained after in vitro fertilization (IVF), and an embryo without deletion in G6PC was transplanted after PGD and was confirmed by prenatal diagnosis, postnatal diagnosis, and subsequent lack of disease symptoms after birth. Conclusions: In summary, we present one of the first examples of using long-read sequencing to identify causal yet complex SVs in exome-negative patients, which subsequently enabled successful personalized PGD. More... »

PAGES

32

References to SciGraph publications

  • 2013-03. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing in NATURE GENETICS
  • 2011-05. Genome structural variation discovery and genotyping in NATURE REVIEWS GENETICS
  • 2015-01. Three novel mutations of the G6PC gene identified in Chinese patients with glycogen storage disease type Ia in EUROPEAN JOURNAL OF PEDIATRICS
  • 2018-02-05. Tandem repeats mediating genetic plasticity in health and disease in NATURE REVIEWS GENETICS
  • 2017-12. Interrogating the “unsequenceable” genomic trinucleotide repeat disorders by long-read sequencing in GENOME MEDICINE
  • 2015-05. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase/glucose-6-phosphate transporter complexes in JOURNAL OF INHERITED METABOLIC DISEASE
  • 2014-07. Genome sequencing identifies major causes of severe intellectual disability in NATURE
  • 2002-10. Glycogen storage disease type I: diagnosis and phenotype/genotype correlation in EUROPEAN JOURNAL OF PEDIATRICS
  • 2016-07. Molecular diagnostic experience of whole-exome sequencing in adult patients in GENETICS IN MEDICINE
  • 2016-07. Clinical application of whole-exome sequencing across clinical indications in GENETICS IN MEDICINE
  • 2015-08. Assembly and diploid architecture of an individual human genome via single-molecule technologies in NATURE METHODS
  • 2010-12. Glycogen storage disease type I and G6Pase-β deficiency: etiology and therapy in NATURE REVIEWS ENDOCRINOLOGY
  • 2016-06-30. Long-read sequencing and de novo assembly of a Chinese genome in NATURE COMMUNICATIONS
  • 2017-12. Novel metrics to measure coverage in whole exome sequencing datasets reveal local and global non-uniformity in SCIENTIFIC REPORTS
  • 2018-10. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature in GENETICS IN MEDICINE
  • 2016-09. Towards precision medicine in NATURE REVIEWS GENETICS
  • 2016-10. De novo assembly and phasing of a Korean human genome in NATURE
  • 2015-05. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology in GENETICS IN MEDICINE
  • 2018-01. Long-read genome sequencing identifies causal structural variation in a Mendelian disease in GENETICS IN MEDICINE
  • 2017-02. Clinical exome sequencing: results from 2819 samples reflecting 1000 families in EUROPEAN JOURNAL OF HUMAN GENETICS
  • 2018-01-29. Nanopore sequencing and assembly of a human genome with ultra-long reads in NATURE BIOTECHNOLOGY
  • 2018-06. Accurate detection of complex structural variations using single-molecule sequencing in NATURE METHODS
  • 2014-11. Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics in GENETICS IN MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s41065-018-0069-1

    DOI

    http://dx.doi.org/10.1186/s41065-018-0069-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107302809

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30279644


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Child", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Mutational Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glucose-6-Phosphatase", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heterozygote", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pedigree", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pregnancy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Preimplantation Diagnosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Deletion", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Reproductive & Genetic Hospital CITIC-Xiangya", 
              "id": "https://www.grid.ac/institutes/grid.477823.d", 
              "name": [
                "Institute of Reproductive and Stem Cell Engineering, Central South University, 410078, Changsha, Hunan, China", 
                "Reproductive and Genetic Hospital of CITIC-Xiangya, 410078, Changsha, Hunan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miao", 
            "givenName": "Hefan", 
            "id": "sg:person.013507265016.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013507265016.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "GrandOmics Biosciences, 102206, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Jiapeng", 
            "id": "sg:person.010467760470.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467760470.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "GrandOmics Biosciences, 102206, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Qi", 
            "id": "sg:person.010567476216.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010567476216.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "GrandOmics Biosciences, 102206, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liang", 
            "givenName": "Fan", 
            "id": "sg:person.01132272023.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132272023.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "GrandOmics Biosciences, 102206, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Depeng", 
            "id": "sg:person.012062721470.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062721470.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Reproductive & Genetic Hospital CITIC-Xiangya", 
              "id": "https://www.grid.ac/institutes/grid.477823.d", 
              "name": [
                "Institute of Reproductive and Stem Cell Engineering, Central South University, 410078, Changsha, Hunan, China", 
                "Reproductive and Genetic Hospital of CITIC-Xiangya, 410078, Changsha, Hunan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Na", 
            "id": "sg:person.010040231016.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010040231016.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Reproductive & Genetic Hospital CITIC-Xiangya", 
              "id": "https://www.grid.ac/institutes/grid.477823.d", 
              "name": [
                "Institute of Reproductive and Stem Cell Engineering, Central South University, 410078, Changsha, Hunan, China", 
                "Reproductive and Genetic Hospital of CITIC-Xiangya, 410078, Changsha, Hunan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gao", 
            "givenName": "Bodi", 
            "id": "sg:person.012230552416.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012230552416.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Reproductive & Genetic Hospital CITIC-Xiangya", 
              "id": "https://www.grid.ac/institutes/grid.477823.d", 
              "name": [
                "Institute of Reproductive and Stem Cell Engineering, Central South University, 410078, Changsha, Hunan, China", 
                "Reproductive and Genetic Hospital of CITIC-Xiangya, 410078, Changsha, Hunan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Du", 
            "givenName": "Juan", 
            "id": "sg:person.015247637011.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247637011.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Reproductive & Genetic Hospital CITIC-Xiangya", 
              "id": "https://www.grid.ac/institutes/grid.477823.d", 
              "name": [
                "Institute of Reproductive and Stem Cell Engineering, Central South University, 410078, Changsha, Hunan, China", 
                "Reproductive and Genetic Hospital of CITIC-Xiangya, 410078, Changsha, Hunan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Ge", 
            "id": "sg:person.01335145024.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335145024.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Children's Hospital of Philadelphia", 
              "id": "https://www.grid.ac/institutes/grid.239552.a", 
              "name": [
                "Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children\u2019s Hospital of Philadelphia, 19104, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Kai", 
            "id": "sg:person.010416523454.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010416523454.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Reproductive & Genetic Hospital CITIC-Xiangya", 
              "id": "https://www.grid.ac/institutes/grid.477823.d", 
              "name": [
                "Institute of Reproductive and Stem Cell Engineering, Central South University, 410078, Changsha, Hunan, China", 
                "Reproductive and Genetic Hospital of CITIC-Xiangya, 410078, Changsha, Hunan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Qianjun", 
            "id": "sg:person.01331431137.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331431137.64"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.gene.2013.11.059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004175816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2958", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004346662", 
              "https://doi.org/10.1038/nrg2958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2014.128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007384508", 
              "https://doi.org/10.1038/gim.2014.128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5808/gi.2016.14.3.70", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007811980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10545-014-9772-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008319318", 
              "https://doi.org/10.1007/s10545-014-9772-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009468905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2016.86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010504077", 
              "https://doi.org/10.1038/nrg.2016.86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/jama.2014.14604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011799003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02679989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012482061", 
              "https://doi.org/10.1007/bf02679989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejhg.2016.146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013046396", 
              "https://doi.org/10.1038/ejhg.2016.146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013577548", 
              "https://doi.org/10.1038/nmeth.3454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxh008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014431182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2015.148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015723556", 
              "https://doi.org/10.1038/gim.2015.148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.6861907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016380326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017642739", 
              "https://doi.org/10.1038/ng.2543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020792304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2015.30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022229472", 
              "https://doi.org/10.1038/gim.2015.30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2015.142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027536750", 
              "https://doi.org/10.1038/gim.2015.142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbs017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029766327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031224678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.coviro.2013.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033405856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/504600", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033821459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034133926", 
              "https://doi.org/10.1038/ncomms12065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrendo.2010.189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035891088", 
              "https://doi.org/10.1038/nrendo.2010.189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrendo.2010.189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035891088", 
              "https://doi.org/10.1038/nrendo.2010.189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00431-014-2354-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037494619", 
              "https://doi.org/10.1007/s00431-014-2354-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00431-014-2354-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037494619", 
              "https://doi.org/10.1007/s00431-014-2354-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s2213-2600(15)00139-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038715582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.141705.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044415247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa1306555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049134320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature20098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049863914", 
              "https://doi.org/10.1038/nature20098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/humu.20772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051893208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052525502", 
              "https://doi.org/10.1038/nature13394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/humrep/der037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052886974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.8211187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062653701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2017.01.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074222289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075173016", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-01005-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084538003", 
              "https://doi.org/10.1038/s41598-017-01005-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/082123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085115201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/082123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085115201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/082123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085115201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2017.86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086112279", 
              "https://doi.org/10.1038/gim.2017.86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-017-0456-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090743132", 
              "https://doi.org/10.1186/s13073-017-0456-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-017-0456-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090743132", 
              "https://doi.org/10.1186/s13073-017-0456-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.4060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100685340", 
              "https://doi.org/10.1038/nbt.4060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2017.115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100820187", 
              "https://doi.org/10.1038/nrg.2017.115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2017.247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101040746", 
              "https://doi.org/10.1038/gim.2017.247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2017.247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101040746", 
              "https://doi.org/10.1038/gim.2017.247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2017.247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101040746", 
              "https://doi.org/10.1038/gim.2017.247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/281683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101529928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/281683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101529928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/281683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101529928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-018-0001-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103690602", 
              "https://doi.org/10.1038/s41592-018-0001-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Background: For a proportion of individuals judged clinically to have a recessive Mendelian disease, only one heterozygous pathogenic variant can be found from clinical whole exome sequencing (WES), posing a challenge to genetic diagnosis and genetic counseling. One possible reason is the limited ability to detect disease causal structural variants (SVs) from short reads sequencing technologies. Long reads sequencing can produce longer reads (typically 1000\u00a0bp or longer), therefore offering greatly improved ability to detect SVs that may be missed by short-read sequencing.\nResults: Here we describe a case study, where WES identified only one heterozygous pathogenic variant for an individual suspected to have glycogen storage disease type Ia (GSD-Ia), which is an autosomal recessive disease caused by bi-allelic mutations in the G6PC gene. Through Nanopore long-read whole-genome sequencing, we identified a 7.1\u00a0kb deletion covering two exons on the other allele, suggesting that complex structural variants (SVs) may explain a fraction of cases when the second pathogenic allele is missing from WES on recessive diseases. Both breakpoints of the deletion are within Alu elements, and we designed Sanger sequencing and quantitative PCR assays based on the breakpoints for preimplantation genetic diagnosis (PGD) for the family planning on another child. Four embryos were obtained after in vitro fertilization (IVF), and an embryo without deletion in G6PC was transplanted after PGD and was confirmed by prenatal diagnosis, postnatal diagnosis, and subsequent lack of disease symptoms after birth.\nConclusions: In summary, we present one of the first examples of using long-read sequencing to identify causal yet complex SVs in exome-negative patients, which subsequently enabled successful personalized PGD.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s41065-018-0069-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1017631", 
            "issn": [
              "0018-0661", 
              "1601-5223"
            ], 
            "name": "Hereditas", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "155"
          }
        ], 
        "name": "Long-read sequencing identified a causal structural variant in an exome-negative case and enabled preimplantation genetic diagnosis", 
        "pagination": "32", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d2ec767f2c0378d87a5dfd2430978dec2c4f4d24d4c74165a8bd972197deb14a"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30279644"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0374654"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s41065-018-0069-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107302809"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s41065-018-0069-1", 
          "https://app.dimensions.ai/details/publication/pub.1107302809"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000560.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs41065-018-0069-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0069-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0069-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0069-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0069-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    364 TRIPLES      21 PREDICATES      88 URIs      35 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s41065-018-0069-1 schema:about N1a3e9c9417f945da99df8b19940532e2
    2 N469c69b3c23e414ca37a76b104c28001
    3 N59a44ac3d43d400c95b3a61e1ac942f9
    4 N7a781b5c1c844fb0ad14c40757418dfe
    5 N7ef4f3faaaed407ea1e2f1f6eadf1e02
    6 N8d0785abd8f64951a5c928a8eb27f268
    7 N98213489d9bc41dc8e1fdb2dd9d54404
    8 Nd2e9dd8520654d2b88bdb200bd43b496
    9 Ndba33f74472b48f19d0aea8d5d5cc102
    10 Ne2e917f94edc4895b90cb306fb132140
    11 Nedb33f0f39894299bcd2b2e1a06799c9
    12 Nee4e0d238bea465d9deaa94e775e817d
    13 Nfbb11cdd044d4c42a8a94408eba1e5cd
    14 Nff24bc6a4467407085fd9014f9431880
    15 anzsrc-for:06
    16 anzsrc-for:0604
    17 schema:author Nb55b118e055640a3bdfb004c1a24452c
    18 schema:citation sg:pub.10.1007/bf02679989
    19 sg:pub.10.1007/s00431-014-2354-y
    20 sg:pub.10.1007/s10545-014-9772-x
    21 sg:pub.10.1038/ejhg.2016.146
    22 sg:pub.10.1038/gim.2014.128
    23 sg:pub.10.1038/gim.2015.142
    24 sg:pub.10.1038/gim.2015.148
    25 sg:pub.10.1038/gim.2015.30
    26 sg:pub.10.1038/gim.2017.247
    27 sg:pub.10.1038/gim.2017.86
    28 sg:pub.10.1038/nature13394
    29 sg:pub.10.1038/nature20098
    30 sg:pub.10.1038/nbt.4060
    31 sg:pub.10.1038/ncomms12065
    32 sg:pub.10.1038/ng.2543
    33 sg:pub.10.1038/nmeth.3454
    34 sg:pub.10.1038/nrendo.2010.189
    35 sg:pub.10.1038/nrg.2016.86
    36 sg:pub.10.1038/nrg.2017.115
    37 sg:pub.10.1038/nrg2958
    38 sg:pub.10.1038/s41592-018-0001-7
    39 sg:pub.10.1038/s41598-017-01005-x
    40 sg:pub.10.1186/s13073-017-0456-7
    41 https://app.dimensions.ai/details/publication/pub.1075173016
    42 https://doi.org/10.1001/jama.2014.14604
    43 https://doi.org/10.1002/humu.20772
    44 https://doi.org/10.1016/j.ajhg.2017.01.004
    45 https://doi.org/10.1016/j.coviro.2013.09.002
    46 https://doi.org/10.1016/j.gene.2013.11.059
    47 https://doi.org/10.1016/s2213-2600(15)00139-3
    48 https://doi.org/10.1056/nejmoa1306555
    49 https://doi.org/10.1086/504600
    50 https://doi.org/10.1093/bib/bbs017
    51 https://doi.org/10.1093/bioinformatics/btl646
    52 https://doi.org/10.1093/bioinformatics/btp352
    53 https://doi.org/10.1093/biostatistics/kxh008
    54 https://doi.org/10.1093/humrep/der037
    55 https://doi.org/10.1093/nar/gkm076
    56 https://doi.org/10.1093/nar/gkq603
    57 https://doi.org/10.1101/082123
    58 https://doi.org/10.1101/281683
    59 https://doi.org/10.1101/gr.141705.112
    60 https://doi.org/10.1101/gr.6861907
    61 https://doi.org/10.1126/science.8211187
    62 https://doi.org/10.5808/gi.2016.14.3.70
    63 schema:datePublished 2018-12
    64 schema:datePublishedReg 2018-12-01
    65 schema:description Background: For a proportion of individuals judged clinically to have a recessive Mendelian disease, only one heterozygous pathogenic variant can be found from clinical whole exome sequencing (WES), posing a challenge to genetic diagnosis and genetic counseling. One possible reason is the limited ability to detect disease causal structural variants (SVs) from short reads sequencing technologies. Long reads sequencing can produce longer reads (typically 1000 bp or longer), therefore offering greatly improved ability to detect SVs that may be missed by short-read sequencing. Results: Here we describe a case study, where WES identified only one heterozygous pathogenic variant for an individual suspected to have glycogen storage disease type Ia (GSD-Ia), which is an autosomal recessive disease caused by bi-allelic mutations in the G6PC gene. Through Nanopore long-read whole-genome sequencing, we identified a 7.1 kb deletion covering two exons on the other allele, suggesting that complex structural variants (SVs) may explain a fraction of cases when the second pathogenic allele is missing from WES on recessive diseases. Both breakpoints of the deletion are within Alu elements, and we designed Sanger sequencing and quantitative PCR assays based on the breakpoints for preimplantation genetic diagnosis (PGD) for the family planning on another child. Four embryos were obtained after in vitro fertilization (IVF), and an embryo without deletion in G6PC was transplanted after PGD and was confirmed by prenatal diagnosis, postnatal diagnosis, and subsequent lack of disease symptoms after birth. Conclusions: In summary, we present one of the first examples of using long-read sequencing to identify causal yet complex SVs in exome-negative patients, which subsequently enabled successful personalized PGD.
    66 schema:genre research_article
    67 schema:inLanguage en
    68 schema:isAccessibleForFree true
    69 schema:isPartOf N2b6117cb68cd4281b5575e6d8c23bfc9
    70 Nd85d91b0a9914f6aa597a1f593aec96e
    71 sg:journal.1017631
    72 schema:name Long-read sequencing identified a causal structural variant in an exome-negative case and enabled preimplantation genetic diagnosis
    73 schema:pagination 32
    74 schema:productId N28c6aa9cb82640cf919784f5f750c504
    75 N33c2a0397b8447b3ac96a68a0aaca816
    76 N47ca24028a0443c8be7207ad3836359e
    77 N5d9e2bd67a394332ad9eabe9e271770c
    78 N94fb63cfc3d44e2993aea89632328ddf
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107302809
    80 https://doi.org/10.1186/s41065-018-0069-1
    81 schema:sdDatePublished 2019-04-10T14:18
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher Ne3316678c7084ff28403de367dca2314
    84 schema:url https://link.springer.com/10.1186%2Fs41065-018-0069-1
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N19dce47ed3274e7c88467968f21ce605 rdf:first sg:person.01331431137.64
    89 rdf:rest rdf:nil
    90 N1a3e9c9417f945da99df8b19940532e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name DNA Mutational Analysis
    92 rdf:type schema:DefinedTerm
    93 N1f6ab536eb264c75ab118c12b2222908 rdf:first sg:person.010416523454.30
    94 rdf:rest N19dce47ed3274e7c88467968f21ce605
    95 N26a92b7092b04b698dfd84d79b59daea schema:name GrandOmics Biosciences, 102206, Beijing, China
    96 rdf:type schema:Organization
    97 N28c6aa9cb82640cf919784f5f750c504 schema:name readcube_id
    98 schema:value d2ec767f2c0378d87a5dfd2430978dec2c4f4d24d4c74165a8bd972197deb14a
    99 rdf:type schema:PropertyValue
    100 N2b6117cb68cd4281b5575e6d8c23bfc9 schema:issueNumber 1
    101 rdf:type schema:PublicationIssue
    102 N33c2a0397b8447b3ac96a68a0aaca816 schema:name nlm_unique_id
    103 schema:value 0374654
    104 rdf:type schema:PropertyValue
    105 N3baca8a492b348d09c88dfd54727cbef schema:name GrandOmics Biosciences, 102206, Beijing, China
    106 rdf:type schema:Organization
    107 N469c69b3c23e414ca37a76b104c28001 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Humans
    109 rdf:type schema:DefinedTerm
    110 N47ca24028a0443c8be7207ad3836359e schema:name dimensions_id
    111 schema:value pub.1107302809
    112 rdf:type schema:PropertyValue
    113 N59a44ac3d43d400c95b3a61e1ac942f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Pedigree
    115 rdf:type schema:DefinedTerm
    116 N5d9e2bd67a394332ad9eabe9e271770c schema:name pubmed_id
    117 schema:value 30279644
    118 rdf:type schema:PropertyValue
    119 N5fbbe503672c45849dd5c39a7142f3f1 schema:name GrandOmics Biosciences, 102206, Beijing, China
    120 rdf:type schema:Organization
    121 N697a98a8b388429fad394825cc6697f5 schema:name GrandOmics Biosciences, 102206, Beijing, China
    122 rdf:type schema:Organization
    123 N7a781b5c1c844fb0ad14c40757418dfe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Pregnancy
    125 rdf:type schema:DefinedTerm
    126 N7ef4f3faaaed407ea1e2f1f6eadf1e02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Child
    128 rdf:type schema:DefinedTerm
    129 N8d0785abd8f64951a5c928a8eb27f268 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Sequence Deletion
    131 rdf:type schema:DefinedTerm
    132 N92a42b857fc946208488c2c5edaa395a rdf:first sg:person.010467760470.87
    133 rdf:rest Na0d17a507d4441dc92f8bf69fee7c048
    134 N9430c0ff34d6402b96e0ea57b1c4ad61 rdf:first sg:person.012230552416.33
    135 rdf:rest Na31bb2d96e164dbda2890945663d75a6
    136 N94fb63cfc3d44e2993aea89632328ddf schema:name doi
    137 schema:value 10.1186/s41065-018-0069-1
    138 rdf:type schema:PropertyValue
    139 N98213489d9bc41dc8e1fdb2dd9d54404 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Exome
    141 rdf:type schema:DefinedTerm
    142 Na0d17a507d4441dc92f8bf69fee7c048 rdf:first sg:person.010567476216.17
    143 rdf:rest Nd5c5d23950274421b504334a3f990e74
    144 Na31bb2d96e164dbda2890945663d75a6 rdf:first sg:person.015247637011.62
    145 rdf:rest Naf2dd59140f945689965a70729914c3e
    146 Naf2dd59140f945689965a70729914c3e rdf:first sg:person.01335145024.26
    147 rdf:rest N1f6ab536eb264c75ab118c12b2222908
    148 Nb55b118e055640a3bdfb004c1a24452c rdf:first sg:person.013507265016.28
    149 rdf:rest N92a42b857fc946208488c2c5edaa395a
    150 Nbae67a55d15a4444b45ac22fc60c3020 rdf:first sg:person.010040231016.29
    151 rdf:rest N9430c0ff34d6402b96e0ea57b1c4ad61
    152 Nbf3fbcb4fdf34b6897282f43b01a5081 rdf:first sg:person.012062721470.47
    153 rdf:rest Nbae67a55d15a4444b45ac22fc60c3020
    154 Nd2e9dd8520654d2b88bdb200bd43b496 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Female
    156 rdf:type schema:DefinedTerm
    157 Nd5c5d23950274421b504334a3f990e74 rdf:first sg:person.01132272023.09
    158 rdf:rest Nbf3fbcb4fdf34b6897282f43b01a5081
    159 Nd85d91b0a9914f6aa597a1f593aec96e schema:volumeNumber 155
    160 rdf:type schema:PublicationVolume
    161 Ndba33f74472b48f19d0aea8d5d5cc102 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Glucose-6-Phosphatase
    163 rdf:type schema:DefinedTerm
    164 Ne2e917f94edc4895b90cb306fb132140 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Exons
    166 rdf:type schema:DefinedTerm
    167 Ne3316678c7084ff28403de367dca2314 schema:name Springer Nature - SN SciGraph project
    168 rdf:type schema:Organization
    169 Nedb33f0f39894299bcd2b2e1a06799c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Male
    171 rdf:type schema:DefinedTerm
    172 Nee4e0d238bea465d9deaa94e775e817d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Alleles
    174 rdf:type schema:DefinedTerm
    175 Nfbb11cdd044d4c42a8a94408eba1e5cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Preimplantation Diagnosis
    177 rdf:type schema:DefinedTerm
    178 Nff24bc6a4467407085fd9014f9431880 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Heterozygote
    180 rdf:type schema:DefinedTerm
    181 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Biological Sciences
    183 rdf:type schema:DefinedTerm
    184 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    185 schema:name Genetics
    186 rdf:type schema:DefinedTerm
    187 sg:journal.1017631 schema:issn 0018-0661
    188 1601-5223
    189 schema:name Hereditas
    190 rdf:type schema:Periodical
    191 sg:person.010040231016.29 schema:affiliation https://www.grid.ac/institutes/grid.477823.d
    192 schema:familyName Ma
    193 schema:givenName Na
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010040231016.29
    195 rdf:type schema:Person
    196 sg:person.010416523454.30 schema:affiliation https://www.grid.ac/institutes/grid.239552.a
    197 schema:familyName Wang
    198 schema:givenName Kai
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010416523454.30
    200 rdf:type schema:Person
    201 sg:person.010467760470.87 schema:affiliation N697a98a8b388429fad394825cc6697f5
    202 schema:familyName Zhou
    203 schema:givenName Jiapeng
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467760470.87
    205 rdf:type schema:Person
    206 sg:person.010567476216.17 schema:affiliation N5fbbe503672c45849dd5c39a7142f3f1
    207 schema:familyName Yang
    208 schema:givenName Qi
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010567476216.17
    210 rdf:type schema:Person
    211 sg:person.01132272023.09 schema:affiliation N26a92b7092b04b698dfd84d79b59daea
    212 schema:familyName Liang
    213 schema:givenName Fan
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132272023.09
    215 rdf:type schema:Person
    216 sg:person.012062721470.47 schema:affiliation N3baca8a492b348d09c88dfd54727cbef
    217 schema:familyName Wang
    218 schema:givenName Depeng
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062721470.47
    220 rdf:type schema:Person
    221 sg:person.012230552416.33 schema:affiliation https://www.grid.ac/institutes/grid.477823.d
    222 schema:familyName Gao
    223 schema:givenName Bodi
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012230552416.33
    225 rdf:type schema:Person
    226 sg:person.01331431137.64 schema:affiliation https://www.grid.ac/institutes/grid.477823.d
    227 schema:familyName Zhang
    228 schema:givenName Qianjun
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331431137.64
    230 rdf:type schema:Person
    231 sg:person.01335145024.26 schema:affiliation https://www.grid.ac/institutes/grid.477823.d
    232 schema:familyName Lin
    233 schema:givenName Ge
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335145024.26
    235 rdf:type schema:Person
    236 sg:person.013507265016.28 schema:affiliation https://www.grid.ac/institutes/grid.477823.d
    237 schema:familyName Miao
    238 schema:givenName Hefan
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013507265016.28
    240 rdf:type schema:Person
    241 sg:person.015247637011.62 schema:affiliation https://www.grid.ac/institutes/grid.477823.d
    242 schema:familyName Du
    243 schema:givenName Juan
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247637011.62
    245 rdf:type schema:Person
    246 sg:pub.10.1007/bf02679989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012482061
    247 https://doi.org/10.1007/bf02679989
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s00431-014-2354-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037494619
    250 https://doi.org/10.1007/s00431-014-2354-y
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s10545-014-9772-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008319318
    253 https://doi.org/10.1007/s10545-014-9772-x
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/ejhg.2016.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013046396
    256 https://doi.org/10.1038/ejhg.2016.146
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/gim.2014.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007384508
    259 https://doi.org/10.1038/gim.2014.128
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/gim.2015.142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027536750
    262 https://doi.org/10.1038/gim.2015.142
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/gim.2015.148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015723556
    265 https://doi.org/10.1038/gim.2015.148
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/gim.2015.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022229472
    268 https://doi.org/10.1038/gim.2015.30
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/gim.2017.247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101040746
    271 https://doi.org/10.1038/gim.2017.247
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/gim.2017.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086112279
    274 https://doi.org/10.1038/gim.2017.86
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/nature13394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052525502
    277 https://doi.org/10.1038/nature13394
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/nature20098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049863914
    280 https://doi.org/10.1038/nature20098
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/nbt.4060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100685340
    283 https://doi.org/10.1038/nbt.4060
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/ncomms12065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034133926
    286 https://doi.org/10.1038/ncomms12065
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/ng.2543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017642739
    289 https://doi.org/10.1038/ng.2543
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/nmeth.3454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013577548
    292 https://doi.org/10.1038/nmeth.3454
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/nrendo.2010.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035891088
    295 https://doi.org/10.1038/nrendo.2010.189
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/nrg.2016.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010504077
    298 https://doi.org/10.1038/nrg.2016.86
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/nrg.2017.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100820187
    301 https://doi.org/10.1038/nrg.2017.115
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/nrg2958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004346662
    304 https://doi.org/10.1038/nrg2958
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/s41592-018-0001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103690602
    307 https://doi.org/10.1038/s41592-018-0001-7
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/s41598-017-01005-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084538003
    310 https://doi.org/10.1038/s41598-017-01005-x
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1186/s13073-017-0456-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090743132
    313 https://doi.org/10.1186/s13073-017-0456-7
    314 rdf:type schema:CreativeWork
    315 https://app.dimensions.ai/details/publication/pub.1075173016 schema:CreativeWork
    316 https://doi.org/10.1001/jama.2014.14604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011799003
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1002/humu.20772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051893208
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1016/j.ajhg.2017.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074222289
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1016/j.coviro.2013.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033405856
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1016/j.gene.2013.11.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004175816
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1016/s2213-2600(15)00139-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038715582
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1056/nejmoa1306555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049134320
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1086/504600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033821459
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1093/bib/bbs017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029766327
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1093/bioinformatics/btl646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031224678
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1093/biostatistics/kxh008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014431182
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1093/humrep/der037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052886974
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1093/nar/gkm076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009468905
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1093/nar/gkq603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020792304
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.1101/082123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085115201
    347 rdf:type schema:CreativeWork
    348 https://doi.org/10.1101/281683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101529928
    349 rdf:type schema:CreativeWork
    350 https://doi.org/10.1101/gr.141705.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044415247
    351 rdf:type schema:CreativeWork
    352 https://doi.org/10.1101/gr.6861907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016380326
    353 rdf:type schema:CreativeWork
    354 https://doi.org/10.1126/science.8211187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062653701
    355 rdf:type schema:CreativeWork
    356 https://doi.org/10.5808/gi.2016.14.3.70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007811980
    357 rdf:type schema:CreativeWork
    358 https://www.grid.ac/institutes/grid.239552.a schema:alternateName Children's Hospital of Philadelphia
    359 schema:name Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, 19104, Philadelphia, PA, USA
    360 rdf:type schema:Organization
    361 https://www.grid.ac/institutes/grid.477823.d schema:alternateName Reproductive & Genetic Hospital CITIC-Xiangya
    362 schema:name Institute of Reproductive and Stem Cell Engineering, Central South University, 410078, Changsha, Hunan, China
    363 Reproductive and Genetic Hospital of CITIC-Xiangya, 410078, Changsha, Hunan, China
    364 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...