Identification of potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Yue Pan, Lingyun Lu, Junquan Chen, Yong Zhong, Zhehao Dai

ABSTRACT

Background: This study aimed to identify potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma by comprehensive bioinformatics analysis. Methods: Data of gene expression profiles (GSE28424) and miRNA expression profiles (GSE28423) were downloaded from GEO database. The differentially expressed genes (DEGs) and miRNAs (DEMIs) were obtained by R Bioconductor packages. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. The relationships among the DEGs and module in PPI network were analyzed by plug-in NetworkAnalyzer and MCODE seperately. Through the TargetScan and comparing target genes with DEGs, the miRNA-mRNA regulation network was established. Results: Totally 346 DEGs and 90 DEMIs were found to be differentially expressed. These DEGs were enriched in biological processes and KEGG pathway of inflammatory immune response. 25 genes in the PPI network were selected as hub genes. Top 10 hub genes were TYROBP, HLA-DRA, VWF, PPBP, SERPING1, HLA-DPA1, SERPINA1, KIF20A, FERMT3, HLA-E. PPI network of DEGs followed a pattern of power law network and met the characteristics of small-world network. MCODE analysis identified 4 clusters and the most significant cluster consisted of 11 nodes and 55 edges. SEPP1, CKS2, TCAP, BPI were identified as the seed genes in their own clusters, respectively. The miRNA-mRNA regulation network which was composed of 89 pairs was established. MiR-210 had the highest connectivity with 12 target genes. Among the predicted target of MiR-96, HLA-DPA1 and TYROBP were the hub genes. Conclusion: Our study indicated possible differentially expressed genes and miRNA, and microRNA-mRNA negative regulatory networks in osteosarcoma by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of osteosarcoma. More... »

PAGES

21

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s41065-018-0061-9

DOI

http://dx.doi.org/10.1186/s41065-018-0061-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103905702

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29760609


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Ontology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "MicroRNAs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Osteosarcoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Maps", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcriptome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Spine Surgery, the Second Xiangya Hospital, Central South University, 410011, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Yue", 
        "id": "sg:person.010055110636.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010055110636.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Orthopaedics, the Fifth Hospital of Xiamen, 361101, Xiamen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Lingyun", 
        "id": "sg:person.01326227130.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326227130.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Spine Surgery, the Second Xiangya Hospital, Central South University, 410011, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Junquan", 
        "id": "sg:person.011450051636.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011450051636.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiangya Hospital Central South University", 
          "id": "https://www.grid.ac/institutes/grid.452223.0", 
          "name": [
            "Department of Nephrology, Xiangya Hospital of Central South University, 410008, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Yong", 
        "id": "sg:person.012245432236.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245432236.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Spine Surgery, the Second Xiangya Hospital, Central South University, 410011, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Zhehao", 
        "id": "sg:person.0650736230.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650736230.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000116337", 
          "https://doi.org/10.1038/nature06309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.immunol.22.012703.104803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007787378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12032-013-0499-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014028099", 
          "https://doi.org/10.1007/s12032-013-0499-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.urolonc.2015.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015172083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40744-016-0046-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016936242", 
          "https://doi.org/10.1007/s40744-016-0046-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40744-016-0046-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016936242", 
          "https://doi.org/10.1007/s40744-016-0046-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017305614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djk015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017995174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fimmu.2014.00147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020834407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-5-p3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021292424", 
          "https://doi.org/10.1186/gb-2003-4-5-p3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1205868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023456194", 
          "https://doi.org/10.1038/sj.onc.1205868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1205868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023456194", 
          "https://doi.org/10.1038/sj.onc.1205868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023540354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.23548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026265667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0067591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028869599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0067591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028869599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029045446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pat.0000000000000050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029538210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pat.0000000000000050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029538210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-5-123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031616644", 
          "https://doi.org/10.1186/1471-2407-5-123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-5-123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031616644", 
          "https://doi.org/10.1186/1471-2407-5-123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-07-2947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033400352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-10-0364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035661416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0048086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038112307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-016-2339-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038937308", 
          "https://doi.org/10.1007/s00018-016-2339-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-016-2339-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038937308", 
          "https://doi.org/10.1007/s00018-016-2339-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ocl.2015.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039037541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040490641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0089223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046909364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cbin.10721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048067902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049253397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15327914nc4801_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050805139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12943-015-0359-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053324717", 
          "https://doi.org/10.1186/s12943-015-0359-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12943-015-0359-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053324717", 
          "https://doi.org/10.1186/s12943-015-0359-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/ijo.2016.3660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071514497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/or.2013.2224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071532228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/or.2013.2224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071532228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075125188", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079185147", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7150/jca.17648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084480904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-16-3480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091848150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4149/bll_2017_087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092354325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2017.403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092446339", 
          "https://doi.org/10.1038/onc.2017.403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2017.403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092446339", 
          "https://doi.org/10.1038/onc.2017.403"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Background: This study aimed to identify potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma by comprehensive bioinformatics analysis.\nMethods: Data of gene expression profiles (GSE28424) and miRNA expression profiles (GSE28423) were downloaded from GEO database. The differentially expressed genes (DEGs) and miRNAs (DEMIs) were obtained by R Bioconductor packages. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. The relationships among the DEGs and module in PPI network were analyzed by plug-in NetworkAnalyzer and MCODE seperately. Through the TargetScan and comparing target genes with DEGs, the miRNA-mRNA regulation network was established.\nResults: Totally 346 DEGs and 90 DEMIs were found to be differentially expressed. These DEGs were enriched in biological processes and KEGG pathway of inflammatory immune response. 25 genes in the PPI network were selected as hub genes. Top 10 hub genes were TYROBP, HLA-DRA, VWF, PPBP, SERPING1, HLA-DPA1, SERPINA1, KIF20A, FERMT3, HLA-E. PPI network of DEGs followed a pattern of power law network and met the characteristics of small-world network. MCODE analysis identified 4 clusters and the most significant cluster consisted of 11 nodes and 55 edges. SEPP1, CKS2, TCAP, BPI were identified as the seed genes in their own clusters, respectively. The miRNA-mRNA regulation network which was composed of 89 pairs was established. MiR-210 had the highest connectivity with 12 target genes. Among the predicted target of MiR-96, HLA-DPA1 and TYROBP were the hub genes.\nConclusion: Our study indicated possible differentially expressed genes and miRNA, and microRNA-mRNA negative regulatory networks in osteosarcoma by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of osteosarcoma.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s41065-018-0061-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017631", 
        "issn": [
          "0018-0661", 
          "1601-5223"
        ], 
        "name": "Hereditas", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "155"
      }
    ], 
    "name": "Identification of potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma", 
    "pagination": "21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7e1b102ce3323c87bdbb4b2092b3c8e91e4607283e37424fc7770be8d086f29f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29760609"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0374654"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s41065-018-0061-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103905702"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s41065-018-0061-9", 
      "https://app.dimensions.ai/details/publication/pub.1103905702"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89789_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs41065-018-0061-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0061-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0061-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0061-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0061-9'


 

This table displays all metadata directly associated to this object as RDF triples.

253 TRIPLES      21 PREDICATES      73 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s41065-018-0061-9 schema:about N05b22cf027844871a83fc023c5063087
2 N30de0a9dc1c8462ca43ce8fd9534c83e
3 N33ce110b040146efb25155ba884fe9b8
4 N3408ff187b9b475e9b98bfb072a806d4
5 N6e7448e53363418d9bf3c51d53eb21b4
6 N8a1771ba23da4131ac58ec015102f804
7 Naddc81bde39e499d8592904e5e0270a8
8 Nb1f2e1fe6a0748ed9b4a614850f37c0f
9 Nc6f1ee1f4d874e44a49a498fcf3c45e4
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N42ba999a85794de0a65f547dd4fd4069
13 schema:citation sg:pub.10.1007/s00018-016-2339-2
14 sg:pub.10.1007/s12032-013-0499-6
15 sg:pub.10.1007/s40744-016-0046-y
16 sg:pub.10.1038/nature06309
17 sg:pub.10.1038/onc.2017.403
18 sg:pub.10.1038/sj.onc.1205868
19 sg:pub.10.1186/1471-2407-5-123
20 sg:pub.10.1186/gb-2003-4-5-p3
21 sg:pub.10.1186/s12943-015-0359-4
22 https://app.dimensions.ai/details/publication/pub.1075125188
23 https://app.dimensions.ai/details/publication/pub.1079185147
24 https://doi.org/10.1002/cbin.10721
25 https://doi.org/10.1002/ijc.23548
26 https://doi.org/10.1016/j.cell.2011.02.013
27 https://doi.org/10.1016/j.ocl.2015.08.022
28 https://doi.org/10.1016/j.urolonc.2015.06.020
29 https://doi.org/10.1093/bioinformatics/btm554
30 https://doi.org/10.1093/jnci/djk015
31 https://doi.org/10.1093/nar/28.1.27
32 https://doi.org/10.1093/nar/gkj021
33 https://doi.org/10.1093/nar/gku1003
34 https://doi.org/10.1097/pat.0000000000000050
35 https://doi.org/10.1146/annurev.immunol.22.012703.104803
36 https://doi.org/10.1158/0008-5472.can-16-3480
37 https://doi.org/10.1158/1055-9965.epi-07-2947
38 https://doi.org/10.1158/1055-9965.epi-10-0364
39 https://doi.org/10.1207/s15327914nc4801_2
40 https://doi.org/10.1371/journal.pone.0048086
41 https://doi.org/10.1371/journal.pone.0067591
42 https://doi.org/10.1371/journal.pone.0089223
43 https://doi.org/10.3389/fimmu.2014.00147
44 https://doi.org/10.3892/ijo.2016.3660
45 https://doi.org/10.3892/or.2013.2224
46 https://doi.org/10.4149/bll_2017_087
47 https://doi.org/10.7150/jca.17648
48 schema:datePublished 2018-12
49 schema:datePublishedReg 2018-12-01
50 schema:description Background: This study aimed to identify potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma by comprehensive bioinformatics analysis. Methods: Data of gene expression profiles (GSE28424) and miRNA expression profiles (GSE28423) were downloaded from GEO database. The differentially expressed genes (DEGs) and miRNAs (DEMIs) were obtained by R Bioconductor packages. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. The relationships among the DEGs and module in PPI network were analyzed by plug-in NetworkAnalyzer and MCODE seperately. Through the TargetScan and comparing target genes with DEGs, the miRNA-mRNA regulation network was established. Results: Totally 346 DEGs and 90 DEMIs were found to be differentially expressed. These DEGs were enriched in biological processes and KEGG pathway of inflammatory immune response. 25 genes in the PPI network were selected as hub genes. Top 10 hub genes were TYROBP, HLA-DRA, VWF, PPBP, SERPING1, HLA-DPA1, SERPINA1, KIF20A, FERMT3, HLA-E. PPI network of DEGs followed a pattern of power law network and met the characteristics of small-world network. MCODE analysis identified 4 clusters and the most significant cluster consisted of 11 nodes and 55 edges. SEPP1, CKS2, TCAP, BPI were identified as the seed genes in their own clusters, respectively. The miRNA-mRNA regulation network which was composed of 89 pairs was established. MiR-210 had the highest connectivity with 12 target genes. Among the predicted target of MiR-96, HLA-DPA1 and TYROBP were the hub genes. Conclusion: Our study indicated possible differentially expressed genes and miRNA, and microRNA-mRNA negative regulatory networks in osteosarcoma by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of osteosarcoma.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf Nd6b7f1d8918645a992603298a4b89cd8
55 Nfbb96f4319a04db4af2323fe256c875a
56 sg:journal.1017631
57 schema:name Identification of potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma
58 schema:pagination 21
59 schema:productId N1f6f643acbea4dfd8e065e9b24f8d82c
60 N74bb04e3d1a34f7d891cd2f0467936cd
61 N86680bddfc464e4aa88a4140018bff46
62 N890b431fc5224859a022ce1f8e662a33
63 N891cebf2bc204159aef15d1135a83a53
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103905702
65 https://doi.org/10.1186/s41065-018-0061-9
66 schema:sdDatePublished 2019-04-11T09:51
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N392e645c47a14c0787d218311ca8cccd
69 schema:url https://link.springer.com/10.1186%2Fs41065-018-0061-9
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N05b22cf027844871a83fc023c5063087 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Protein Interaction Maps
75 rdf:type schema:DefinedTerm
76 N0852d78675ca44688e280a21e2ee7223 rdf:first sg:person.012245432236.91
77 rdf:rest Na665949a7c3f425ba95a69a02ecb0537
78 N0da46efdcf2345978695e83108ae7573 schema:name Department of Spine Surgery, the Second Xiangya Hospital, Central South University, 410011, Changsha, China
79 rdf:type schema:Organization
80 N1f6f643acbea4dfd8e065e9b24f8d82c schema:name nlm_unique_id
81 schema:value 0374654
82 rdf:type schema:PropertyValue
83 N30de0a9dc1c8462ca43ce8fd9534c83e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Humans
85 rdf:type schema:DefinedTerm
86 N33ce110b040146efb25155ba884fe9b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name MicroRNAs
88 rdf:type schema:DefinedTerm
89 N3408ff187b9b475e9b98bfb072a806d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Osteosarcoma
91 rdf:type schema:DefinedTerm
92 N392e645c47a14c0787d218311ca8cccd schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N42ba999a85794de0a65f547dd4fd4069 rdf:first sg:person.010055110636.31
95 rdf:rest N82840382956e49d4832d1177c76c792d
96 N46896a4358494ebb8f60c766c897d6a1 rdf:first sg:person.011450051636.66
97 rdf:rest N0852d78675ca44688e280a21e2ee7223
98 N52b6ce0e76a24b8ea9c529d202566ef4 schema:name Department of Spine Surgery, the Second Xiangya Hospital, Central South University, 410011, Changsha, China
99 rdf:type schema:Organization
100 N5f2dfca7701e40b6962c09b818a47778 schema:name Department of Orthopaedics, the Fifth Hospital of Xiamen, 361101, Xiamen, China
101 rdf:type schema:Organization
102 N6e7448e53363418d9bf3c51d53eb21b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Computational Biology
104 rdf:type schema:DefinedTerm
105 N74bb04e3d1a34f7d891cd2f0467936cd schema:name readcube_id
106 schema:value 7e1b102ce3323c87bdbb4b2092b3c8e91e4607283e37424fc7770be8d086f29f
107 rdf:type schema:PropertyValue
108 N82840382956e49d4832d1177c76c792d rdf:first sg:person.01326227130.01
109 rdf:rest N46896a4358494ebb8f60c766c897d6a1
110 N86680bddfc464e4aa88a4140018bff46 schema:name dimensions_id
111 schema:value pub.1103905702
112 rdf:type schema:PropertyValue
113 N890b431fc5224859a022ce1f8e662a33 schema:name doi
114 schema:value 10.1186/s41065-018-0061-9
115 rdf:type schema:PropertyValue
116 N891cebf2bc204159aef15d1135a83a53 schema:name pubmed_id
117 schema:value 29760609
118 rdf:type schema:PropertyValue
119 N8a1771ba23da4131ac58ec015102f804 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Transcriptome
121 rdf:type schema:DefinedTerm
122 Na665949a7c3f425ba95a69a02ecb0537 rdf:first sg:person.0650736230.61
123 rdf:rest rdf:nil
124 Naa8b8a263f4942e1b99ad5ca61ba8ab2 schema:name Department of Spine Surgery, the Second Xiangya Hospital, Central South University, 410011, Changsha, China
125 rdf:type schema:Organization
126 Naddc81bde39e499d8592904e5e0270a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name RNA, Messenger
128 rdf:type schema:DefinedTerm
129 Nb1f2e1fe6a0748ed9b4a614850f37c0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Gene Ontology
131 rdf:type schema:DefinedTerm
132 Nc6f1ee1f4d874e44a49a498fcf3c45e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Gene Regulatory Networks
134 rdf:type schema:DefinedTerm
135 Nd6b7f1d8918645a992603298a4b89cd8 schema:volumeNumber 155
136 rdf:type schema:PublicationVolume
137 Nfbb96f4319a04db4af2323fe256c875a schema:issueNumber 1
138 rdf:type schema:PublicationIssue
139 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
140 schema:name Biological Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
143 schema:name Genetics
144 rdf:type schema:DefinedTerm
145 sg:journal.1017631 schema:issn 0018-0661
146 1601-5223
147 schema:name Hereditas
148 rdf:type schema:Periodical
149 sg:person.010055110636.31 schema:affiliation N52b6ce0e76a24b8ea9c529d202566ef4
150 schema:familyName Pan
151 schema:givenName Yue
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010055110636.31
153 rdf:type schema:Person
154 sg:person.011450051636.66 schema:affiliation Naa8b8a263f4942e1b99ad5ca61ba8ab2
155 schema:familyName Chen
156 schema:givenName Junquan
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011450051636.66
158 rdf:type schema:Person
159 sg:person.012245432236.91 schema:affiliation https://www.grid.ac/institutes/grid.452223.0
160 schema:familyName Zhong
161 schema:givenName Yong
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245432236.91
163 rdf:type schema:Person
164 sg:person.01326227130.01 schema:affiliation N5f2dfca7701e40b6962c09b818a47778
165 schema:familyName Lu
166 schema:givenName Lingyun
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326227130.01
168 rdf:type schema:Person
169 sg:person.0650736230.61 schema:affiliation N0da46efdcf2345978695e83108ae7573
170 schema:familyName Dai
171 schema:givenName Zhehao
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650736230.61
173 rdf:type schema:Person
174 sg:pub.10.1007/s00018-016-2339-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038937308
175 https://doi.org/10.1007/s00018-016-2339-2
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s12032-013-0499-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014028099
178 https://doi.org/10.1007/s12032-013-0499-6
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s40744-016-0046-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016936242
181 https://doi.org/10.1007/s40744-016-0046-y
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nature06309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000116337
184 https://doi.org/10.1038/nature06309
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/onc.2017.403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092446339
187 https://doi.org/10.1038/onc.2017.403
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/sj.onc.1205868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023456194
190 https://doi.org/10.1038/sj.onc.1205868
191 rdf:type schema:CreativeWork
192 sg:pub.10.1186/1471-2407-5-123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031616644
193 https://doi.org/10.1186/1471-2407-5-123
194 rdf:type schema:CreativeWork
195 sg:pub.10.1186/gb-2003-4-5-p3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021292424
196 https://doi.org/10.1186/gb-2003-4-5-p3
197 rdf:type schema:CreativeWork
198 sg:pub.10.1186/s12943-015-0359-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053324717
199 https://doi.org/10.1186/s12943-015-0359-4
200 rdf:type schema:CreativeWork
201 https://app.dimensions.ai/details/publication/pub.1075125188 schema:CreativeWork
202 https://app.dimensions.ai/details/publication/pub.1079185147 schema:CreativeWork
203 https://doi.org/10.1002/cbin.10721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048067902
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1002/ijc.23548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026265667
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.cell.2011.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023540354
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.ocl.2015.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039037541
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.urolonc.2015.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015172083
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/bioinformatics/btm554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049253397
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/jnci/djk015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017995174
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/nar/gkj021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040490641
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/nar/gku1003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029045446
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1097/pat.0000000000000050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029538210
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1146/annurev.immunol.22.012703.104803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007787378
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1158/0008-5472.can-16-3480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091848150
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1158/1055-9965.epi-07-2947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033400352
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1158/1055-9965.epi-10-0364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035661416
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1207/s15327914nc4801_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050805139
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1371/journal.pone.0048086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038112307
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1371/journal.pone.0067591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028869599
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1371/journal.pone.0089223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046909364
240 rdf:type schema:CreativeWork
241 https://doi.org/10.3389/fimmu.2014.00147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020834407
242 rdf:type schema:CreativeWork
243 https://doi.org/10.3892/ijo.2016.3660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071514497
244 rdf:type schema:CreativeWork
245 https://doi.org/10.3892/or.2013.2224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071532228
246 rdf:type schema:CreativeWork
247 https://doi.org/10.4149/bll_2017_087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092354325
248 rdf:type schema:CreativeWork
249 https://doi.org/10.7150/jca.17648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084480904
250 rdf:type schema:CreativeWork
251 https://www.grid.ac/institutes/grid.452223.0 schema:alternateName Xiangya Hospital Central South University
252 schema:name Department of Nephrology, Xiangya Hospital of Central South University, 410008, Changsha, China
253 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...