Bioinformatics-based identification of miR-542-5p as a predictive biomarker in breast cancer therapy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Qiong-Ni Zhu, Helen Renaud, Ying Guo

ABSTRACT

Background: Tamoxifen is the first-line hormone therapy for estrogen receptor alpha positive (ERα+) breast cancer. However, about 40% of patients with ERα + breast cancer who receive tamoxifen therapy eventually develop resistance resulting in a poor prognosis. The aim of this study was to mine available data sets in the Gene Expression Omnibus (GEO) database, including in vitro (cell lines) and in vivo (tissue samples), and to identify all miRNAs associated with tamoxifen resistance (TamR) in breast cancer. Secondly, this study aimed to predict the key gene regulatory networks of newly found TamR-related miRNAs and evaluate the potential role of the miRNAs and targets as potential prognosis biomarkers for breast cancer patients. Result: Microarray data sets from two different studies were used from the GEO database: 1. GSE66607: miRNA of MCF-7 TamR cells; 2. GSE37405: TamR tissues. Differentially expressed microRNAs (miRNAs) were identified in both data sets and 5 differentially expressed miRNAs were found to overlap between the two data sets. Profiles of GSE37405 and data from the Kaplan-Meier Plotter Database (KMPD) along with Gene Expression Profiling Interactive Analysis (GEPIA) were used to reveal the relationship between these 5 miRNAs and overall survival. The results showed that has-miR-542-5p was the only miRNA associated with overall survival of ERα + breast cancer patients who received adjuvant tamoxifen. Targets of has-miR-542-5p were predicted by miRanda and TargetScan, and the mRNA expression of the three 3 target gene, Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Beta (YWHAB), Lymphocyte Antigen 9 (LY9), and Secreted Frizzled Related Protein 1 (SFRP1) were associated with overall survival in 2 different databases. Copy-number alterations (CNAs) of SFRP1 confer survival disadvantage to breast cancer patients and alter the mRNA expression of SFRP1 in cBioPortal database. Conclusion: This study indicates that miRNA has-miR-542-5p is associated with TamR and can predict prognosis of breast cancer patients. Furthermore, has-miR-542-5p may be acting through a mechanism involving the target genes YWHAB, LY9, and SFRP1. Overall, has-miR-542-5p is a predictive biomarker and potential target for therapy of breast cancer patients. More... »

PAGES

17

References to SciGraph publications

  • 2014-06. Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status in CELLULAR ONCOLOGY
  • 2016-12. miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients in BREAST CANCER RESEARCH AND TREATMENT
  • 2010-10. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients in BREAST CANCER RESEARCH AND TREATMENT
  • 2012-04. A set of miRNAs participates in the cellular senescence program in human diploid fibroblasts in CELL DEATH & DIFFERENTIATION
  • 2011-12. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy in NATURE REVIEWS CANCER
  • 2011-04. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy in NATURE MEDICINE
  • 2015-10. miR-378a-3p modulates tamoxifen sensitivity in breast cancer MCF-7 cells through targeting GOLT1A in SCIENTIFIC REPORTS
  • 2015-08. MicroRNA-320a sensitizes tamoxifen-resistant breast cancer cells to tamoxifen by targeting ARPP-19 and ERRγ* in SCIENTIFIC REPORTS
  • 2015-08. Construction of therapeutically relevant human prostate epithelial fate map by utilising miRNA and mRNA microarray expression data in BRITISH JOURNAL OF CANCER
  • 2016-11. Downregulation of microRNA-27b-3p enhances tamoxifen resistance in breast cancer by increasing NR5A2 and CREB1 expression in CELL DEATH & DISEASE
  • 2015-11. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance in NATURE
  • 2013-12. Differential protein expression in perfusates from metastasized rat livers in PROTEOME SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s41065-018-0055-7

    DOI

    http://dx.doi.org/10.1186/s41065-018-0055-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100403759

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29371858


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Resistance, Neoplasm", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MCF-7 Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tamoxifen", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Central South University", 
              "id": "https://www.grid.ac/institutes/grid.216417.7", 
              "name": [
                "Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 410008, Changsha, People\u2019s Republic of China", 
                "Institute of Clinical Pharmacology, Central South University, 410078, Changsha, People\u2019s Republic of China", 
                "Hunan Key Laboratory of Pharmacogenetics, 410078, Changsha, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Qiong-Ni", 
            "id": "sg:person.0724150662.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724150662.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Kansas Medical Center", 
              "id": "https://www.grid.ac/institutes/grid.412016.0", 
              "name": [
                "University of Kansas Medical Center, 66160, Kansas City, KS, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Renaud", 
            "givenName": "Helen", 
            "id": "sg:person.01300310571.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300310571.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Central South University", 
              "id": "https://www.grid.ac/institutes/grid.216417.7", 
              "name": [
                "Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 410008, Changsha, People\u2019s Republic of China", 
                "Institute of Clinical Pharmacology, Central South University, 410078, Changsha, People\u2019s Republic of China", 
                "Hunan Key Laboratory of Pharmacogenetics, 410078, Changsha, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Ying", 
            "id": "sg:person.01054060140.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054060140.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1634/theoncologist.2014-0290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000922124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep08735", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002496447", 
              "https://doi.org/10.1038/srep08735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.27513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002615164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1477-5956-11-37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003800988", 
              "https://doi.org/10.1186/1477-5956-11-37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biopha.2016.08.058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005709607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1535-7163.mct-11-0873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005787006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/ijms161024243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006957975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bies.201300104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008001335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.25436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008091857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.25436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008091857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18632/oncotarget.14662", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008224005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.canlet.2016.12.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008387443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0036170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009847001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cdd.2011.143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012817615", 
              "https://doi.org/10.1038/cdd.2011.143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.canlet.2011.01.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015142163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7314/apjcp.2014.15.22.10021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016134973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.2344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017392354", 
              "https://doi.org/10.1038/nm.2344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0907560106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019325009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-009-0674-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019543499", 
              "https://doi.org/10.1007/s10549-009-0674-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-009-0674-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019543499", 
              "https://doi.org/10.1007/s10549-009-0674-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep13170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019952653", 
              "https://doi.org/10.1038/srep13170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-016-4013-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020937291", 
              "https://doi.org/10.1007/s10549-016-4013-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-016-4013-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020937291", 
              "https://doi.org/10.1007/s10549-016-4013-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3322/caac.21244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022276018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/path.2802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023912062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/path.2802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023912062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18632/oncotarget.11055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024400578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13402-014-0176-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025992189", 
              "https://doi.org/10.1007/s13402-014-0176-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1677/erc.1.00776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032155090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1677/erc.1.00776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032155090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7314/apjcp.2016.17.2.581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032536245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/scisignal.2004088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033807182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.2015.262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034520054", 
              "https://doi.org/10.1038/bjc.2015.262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks1193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035551539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18632/oncotarget.11136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036076784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbrc.2016.06.133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040509635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15748", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045603885", 
              "https://doi.org/10.1038/nature15748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/iub.1273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048148141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1541-7786.mcr-11-0255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048592869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1873-3468.12538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048596619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/path.4363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050090501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc3166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051624616", 
              "https://doi.org/10.1038/nrc3166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cddis.2016.361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052519297", 
              "https://doi.org/10.1038/cddis.2016.361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/15384047.2014.1002360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058401462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1530/erc-15-0355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067716696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/092986707782794023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069161114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/1381612822666161102100211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069171264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3892/or.2014.3190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071533080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3892/or.2014.3190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071533080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3892/or.2015.3899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071533682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3892/or.2015.3899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071533682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4161/epi.19614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072302462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4049/jimmunol.176.1.291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077164362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4049/jimmunol.1301022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078773168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.6004/jnccn.2016.0037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079239157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.6004/jnccn.2016.0037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079239157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkx247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084602550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biopha.2017.04.085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085112156"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Background: Tamoxifen is the first-line hormone therapy for estrogen receptor alpha positive (ER\u03b1+) breast cancer. However, about 40% of patients with ER\u03b1\u2009+\u2009breast cancer who receive tamoxifen therapy eventually develop resistance resulting in a poor prognosis. The aim of this study was to mine available data sets in the Gene Expression Omnibus (GEO) database, including in vitro (cell lines) and in vivo (tissue samples), and to identify all miRNAs associated with tamoxifen resistance (TamR) in breast cancer. Secondly, this study aimed to predict the key gene regulatory networks of newly found TamR-related miRNAs and evaluate the potential role of the miRNAs and targets as potential prognosis biomarkers for breast cancer patients.\nResult: Microarray data sets from two different studies were used from the GEO database: 1. GSE66607: miRNA of MCF-7 TamR cells; 2. GSE37405: TamR tissues. Differentially expressed microRNAs (miRNAs) were identified in both data sets and 5 differentially expressed miRNAs were found to overlap between the two data sets. Profiles of GSE37405 and data from the Kaplan-Meier Plotter Database (KMPD) along with Gene Expression Profiling Interactive Analysis (GEPIA) were used to reveal the relationship between these 5 miRNAs and overall survival. The results showed that has-miR-542-5p was the only miRNA associated with overall survival of ER\u03b1\u2009+\u2009breast cancer patients who received adjuvant tamoxifen. Targets of has-miR-542-5p were predicted by miRanda and TargetScan, and the mRNA expression of the three 3 target gene, Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Beta (YWHAB), Lymphocyte Antigen 9 (LY9), and Secreted Frizzled Related Protein 1 (SFRP1) were associated with overall survival in 2 different databases. Copy-number alterations (CNAs) of SFRP1 confer survival disadvantage to breast cancer patients and alter the mRNA expression of SFRP1 in cBioPortal database.\nConclusion: This study indicates that miRNA has-miR-542-5p is associated with TamR and can predict prognosis of breast cancer patients. Furthermore, has-miR-542-5p may be acting through a mechanism involving the target genes YWHAB, LY9, and SFRP1. Overall, has-miR-542-5p is a predictive biomarker and potential target for therapy of breast cancer patients.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s41065-018-0055-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1017631", 
            "issn": [
              "0018-0661", 
              "1601-5223"
            ], 
            "name": "Hereditas", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "155"
          }
        ], 
        "name": "Bioinformatics-based identification of miR-542-5p as a predictive biomarker in breast cancer therapy", 
        "pagination": "17", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5aaa8e9ed3f527ab99471da12698abb9af0e1cf3812bb7bc7bd077a169cc13fc"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29371858"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0374654"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s41065-018-0055-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100403759"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s41065-018-0055-7", 
          "https://app.dimensions.ai/details/publication/pub.1100403759"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000493.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186/s41065-018-0055-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0055-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0055-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0055-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41065-018-0055-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    294 TRIPLES      21 PREDICATES      90 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s41065-018-0055-7 schema:about N01706193ac324a46947d15b9e2d979df
    2 N1565d0e91824496bbfaf9f9ca86c1246
    3 N2cfc9a3ee5e74ea6ba7d36499aff9590
    4 N4b46d9e0db714f36882d654513e5d301
    5 N6711a666d1fb406b86f30c44b13db73f
    6 N6bcb19647e0447039882696b2c0ed69a
    7 Nbb2ee753593c485d8a079398a8151cc4
    8 Nbb6e4904d0394c5b9efce26fdaff9737
    9 Ne889bd0998594a31a487c1eb2877d2a5
    10 Nedd5410a116d472999d153e8d75f177c
    11 Nf3dcba2233994c80ab5dad8616674e92
    12 anzsrc-for:11
    13 anzsrc-for:1112
    14 schema:author N3c71fe476be74495bbf0a913311a1d8f
    15 schema:citation sg:pub.10.1007/s10549-009-0674-9
    16 sg:pub.10.1007/s10549-016-4013-7
    17 sg:pub.10.1007/s13402-014-0176-6
    18 sg:pub.10.1038/bjc.2015.262
    19 sg:pub.10.1038/cdd.2011.143
    20 sg:pub.10.1038/cddis.2016.361
    21 sg:pub.10.1038/nature15748
    22 sg:pub.10.1038/nm.2344
    23 sg:pub.10.1038/nrc3166
    24 sg:pub.10.1038/srep08735
    25 sg:pub.10.1038/srep13170
    26 sg:pub.10.1186/1477-5956-11-37
    27 https://doi.org/10.1002/1873-3468.12538
    28 https://doi.org/10.1002/bies.201300104
    29 https://doi.org/10.1002/ijc.25436
    30 https://doi.org/10.1002/ijc.27513
    31 https://doi.org/10.1002/iub.1273
    32 https://doi.org/10.1002/path.2802
    33 https://doi.org/10.1002/path.4363
    34 https://doi.org/10.1016/j.bbrc.2016.06.133
    35 https://doi.org/10.1016/j.biopha.2016.08.058
    36 https://doi.org/10.1016/j.biopha.2017.04.085
    37 https://doi.org/10.1016/j.canlet.2011.01.016
    38 https://doi.org/10.1016/j.canlet.2016.12.007
    39 https://doi.org/10.1073/pnas.0907560106
    40 https://doi.org/10.1080/15384047.2014.1002360
    41 https://doi.org/10.1093/nar/gks1193
    42 https://doi.org/10.1093/nar/gkx247
    43 https://doi.org/10.1126/scisignal.2004088
    44 https://doi.org/10.1158/1535-7163.mct-11-0873
    45 https://doi.org/10.1158/1541-7786.mcr-11-0255
    46 https://doi.org/10.1371/journal.pone.0036170
    47 https://doi.org/10.1530/erc-15-0355
    48 https://doi.org/10.1634/theoncologist.2014-0290
    49 https://doi.org/10.1677/erc.1.00776
    50 https://doi.org/10.18632/oncotarget.11055
    51 https://doi.org/10.18632/oncotarget.11136
    52 https://doi.org/10.18632/oncotarget.14662
    53 https://doi.org/10.2174/092986707782794023
    54 https://doi.org/10.2174/1381612822666161102100211
    55 https://doi.org/10.3322/caac.21244
    56 https://doi.org/10.3390/ijms161024243
    57 https://doi.org/10.3892/or.2014.3190
    58 https://doi.org/10.3892/or.2015.3899
    59 https://doi.org/10.4049/jimmunol.1301022
    60 https://doi.org/10.4049/jimmunol.176.1.291
    61 https://doi.org/10.4161/epi.19614
    62 https://doi.org/10.6004/jnccn.2016.0037
    63 https://doi.org/10.7314/apjcp.2014.15.22.10021
    64 https://doi.org/10.7314/apjcp.2016.17.2.581
    65 schema:datePublished 2018-12
    66 schema:datePublishedReg 2018-12-01
    67 schema:description Background: Tamoxifen is the first-line hormone therapy for estrogen receptor alpha positive (ERα+) breast cancer. However, about 40% of patients with ERα + breast cancer who receive tamoxifen therapy eventually develop resistance resulting in a poor prognosis. The aim of this study was to mine available data sets in the Gene Expression Omnibus (GEO) database, including in vitro (cell lines) and in vivo (tissue samples), and to identify all miRNAs associated with tamoxifen resistance (TamR) in breast cancer. Secondly, this study aimed to predict the key gene regulatory networks of newly found TamR-related miRNAs and evaluate the potential role of the miRNAs and targets as potential prognosis biomarkers for breast cancer patients. Result: Microarray data sets from two different studies were used from the GEO database: 1. GSE66607: miRNA of MCF-7 TamR cells; 2. GSE37405: TamR tissues. Differentially expressed microRNAs (miRNAs) were identified in both data sets and 5 differentially expressed miRNAs were found to overlap between the two data sets. Profiles of GSE37405 and data from the Kaplan-Meier Plotter Database (KMPD) along with Gene Expression Profiling Interactive Analysis (GEPIA) were used to reveal the relationship between these 5 miRNAs and overall survival. The results showed that has-miR-542-5p was the only miRNA associated with overall survival of ERα + breast cancer patients who received adjuvant tamoxifen. Targets of has-miR-542-5p were predicted by miRanda and TargetScan, and the mRNA expression of the three 3 target gene, Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Beta (YWHAB), Lymphocyte Antigen 9 (LY9), and Secreted Frizzled Related Protein 1 (SFRP1) were associated with overall survival in 2 different databases. Copy-number alterations (CNAs) of SFRP1 confer survival disadvantage to breast cancer patients and alter the mRNA expression of SFRP1 in cBioPortal database. Conclusion: This study indicates that miRNA has-miR-542-5p is associated with TamR and can predict prognosis of breast cancer patients. Furthermore, has-miR-542-5p may be acting through a mechanism involving the target genes YWHAB, LY9, and SFRP1. Overall, has-miR-542-5p is a predictive biomarker and potential target for therapy of breast cancer patients.
    68 schema:genre research_article
    69 schema:inLanguage en
    70 schema:isAccessibleForFree true
    71 schema:isPartOf N8aa5d90a1a5a40f28aba7a6ba81660cb
    72 Na6f3c16968c24b91ba1967f9bcd4f94d
    73 sg:journal.1017631
    74 schema:name Bioinformatics-based identification of miR-542-5p as a predictive biomarker in breast cancer therapy
    75 schema:pagination 17
    76 schema:productId N230b92227b1b4099a94fb698a71df694
    77 N682267e2dcb649b0b2518a2817d83023
    78 N89ac69c387544e9f899279337ca6bf2c
    79 Nca41ca6a72c44381b37e35ec302c92d5
    80 Ned41ed6a95e84d63a4874a161336fe76
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100403759
    82 https://doi.org/10.1186/s41065-018-0055-7
    83 schema:sdDatePublished 2019-04-10T14:05
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher N45372d0e1b7c414fa54a549ee50475a4
    86 schema:url http://link.springer.com/10.1186/s41065-018-0055-7
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N01706193ac324a46947d15b9e2d979df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Computational Biology
    92 rdf:type schema:DefinedTerm
    93 N0b47ddb536864b33a56cc3f37676704d rdf:first sg:person.01054060140.33
    94 rdf:rest rdf:nil
    95 N1565d0e91824496bbfaf9f9ca86c1246 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Female
    97 rdf:type schema:DefinedTerm
    98 N230b92227b1b4099a94fb698a71df694 schema:name nlm_unique_id
    99 schema:value 0374654
    100 rdf:type schema:PropertyValue
    101 N2cfc9a3ee5e74ea6ba7d36499aff9590 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Tamoxifen
    103 rdf:type schema:DefinedTerm
    104 N3c71fe476be74495bbf0a913311a1d8f rdf:first sg:person.0724150662.73
    105 rdf:rest Na8d17b258f1148f299ec6451b3853970
    106 N45372d0e1b7c414fa54a549ee50475a4 schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 N4b46d9e0db714f36882d654513e5d301 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Humans
    110 rdf:type schema:DefinedTerm
    111 N6711a666d1fb406b86f30c44b13db73f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Drug Resistance, Neoplasm
    113 rdf:type schema:DefinedTerm
    114 N682267e2dcb649b0b2518a2817d83023 schema:name pubmed_id
    115 schema:value 29371858
    116 rdf:type schema:PropertyValue
    117 N6bcb19647e0447039882696b2c0ed69a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name MicroRNAs
    119 rdf:type schema:DefinedTerm
    120 N89ac69c387544e9f899279337ca6bf2c schema:name doi
    121 schema:value 10.1186/s41065-018-0055-7
    122 rdf:type schema:PropertyValue
    123 N8aa5d90a1a5a40f28aba7a6ba81660cb schema:issueNumber 1
    124 rdf:type schema:PublicationIssue
    125 Na6f3c16968c24b91ba1967f9bcd4f94d schema:volumeNumber 155
    126 rdf:type schema:PublicationVolume
    127 Na8d17b258f1148f299ec6451b3853970 rdf:first sg:person.01300310571.93
    128 rdf:rest N0b47ddb536864b33a56cc3f37676704d
    129 Nbb2ee753593c485d8a079398a8151cc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Oligonucleotide Array Sequence Analysis
    131 rdf:type schema:DefinedTerm
    132 Nbb6e4904d0394c5b9efce26fdaff9737 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Biomarkers
    134 rdf:type schema:DefinedTerm
    135 Nca41ca6a72c44381b37e35ec302c92d5 schema:name readcube_id
    136 schema:value 5aaa8e9ed3f527ab99471da12698abb9af0e1cf3812bb7bc7bd077a169cc13fc
    137 rdf:type schema:PropertyValue
    138 Ne889bd0998594a31a487c1eb2877d2a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Breast Neoplasms
    140 rdf:type schema:DefinedTerm
    141 Ned41ed6a95e84d63a4874a161336fe76 schema:name dimensions_id
    142 schema:value pub.1100403759
    143 rdf:type schema:PropertyValue
    144 Nedd5410a116d472999d153e8d75f177c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name MCF-7 Cells
    146 rdf:type schema:DefinedTerm
    147 Nf3dcba2233994c80ab5dad8616674e92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Gene Expression Profiling
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Medical and Health Sciences
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Oncology and Carcinogenesis
    155 rdf:type schema:DefinedTerm
    156 sg:journal.1017631 schema:issn 0018-0661
    157 1601-5223
    158 schema:name Hereditas
    159 rdf:type schema:Periodical
    160 sg:person.01054060140.33 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
    161 schema:familyName Guo
    162 schema:givenName Ying
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054060140.33
    164 rdf:type schema:Person
    165 sg:person.01300310571.93 schema:affiliation https://www.grid.ac/institutes/grid.412016.0
    166 schema:familyName Renaud
    167 schema:givenName Helen
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300310571.93
    169 rdf:type schema:Person
    170 sg:person.0724150662.73 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
    171 schema:familyName Zhu
    172 schema:givenName Qiong-Ni
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724150662.73
    174 rdf:type schema:Person
    175 sg:pub.10.1007/s10549-009-0674-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019543499
    176 https://doi.org/10.1007/s10549-009-0674-9
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s10549-016-4013-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020937291
    179 https://doi.org/10.1007/s10549-016-4013-7
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s13402-014-0176-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025992189
    182 https://doi.org/10.1007/s13402-014-0176-6
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/bjc.2015.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034520054
    185 https://doi.org/10.1038/bjc.2015.262
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/cdd.2011.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012817615
    188 https://doi.org/10.1038/cdd.2011.143
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/cddis.2016.361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052519297
    191 https://doi.org/10.1038/cddis.2016.361
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nature15748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045603885
    194 https://doi.org/10.1038/nature15748
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nm.2344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017392354
    197 https://doi.org/10.1038/nm.2344
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nrc3166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051624616
    200 https://doi.org/10.1038/nrc3166
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/srep08735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002496447
    203 https://doi.org/10.1038/srep08735
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/srep13170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019952653
    206 https://doi.org/10.1038/srep13170
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/1477-5956-11-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003800988
    209 https://doi.org/10.1186/1477-5956-11-37
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1002/1873-3468.12538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048596619
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1002/bies.201300104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008001335
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1002/ijc.25436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008091857
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1002/ijc.27513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002615164
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1002/iub.1273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048148141
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1002/path.2802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023912062
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1002/path.4363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050090501
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1016/j.bbrc.2016.06.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040509635
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/j.biopha.2016.08.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005709607
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.biopha.2017.04.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085112156
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/j.canlet.2011.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015142163
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1016/j.canlet.2016.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008387443
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1073/pnas.0907560106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019325009
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1080/15384047.2014.1002360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058401462
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1093/nar/gks1193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035551539
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1093/nar/gkx247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084602550
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1126/scisignal.2004088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033807182
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1158/1535-7163.mct-11-0873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005787006
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1158/1541-7786.mcr-11-0255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048592869
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1371/journal.pone.0036170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009847001
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1530/erc-15-0355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067716696
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1634/theoncologist.2014-0290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000922124
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1677/erc.1.00776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032155090
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.18632/oncotarget.11055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024400578
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.18632/oncotarget.11136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036076784
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.18632/oncotarget.14662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008224005
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.2174/092986707782794023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069161114
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.2174/1381612822666161102100211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069171264
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.3322/caac.21244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022276018
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.3390/ijms161024243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006957975
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.3892/or.2014.3190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071533080
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.3892/or.2015.3899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071533682
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.4049/jimmunol.1301022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078773168
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.4049/jimmunol.176.1.291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077164362
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.4161/epi.19614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072302462
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.6004/jnccn.2016.0037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079239157
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.7314/apjcp.2014.15.22.10021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016134973
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.7314/apjcp.2016.17.2.581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032536245
    286 rdf:type schema:CreativeWork
    287 https://www.grid.ac/institutes/grid.216417.7 schema:alternateName Central South University
    288 schema:name Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 410008, Changsha, People’s Republic of China
    289 Hunan Key Laboratory of Pharmacogenetics, 410078, Changsha, People’s Republic of China
    290 Institute of Clinical Pharmacology, Central South University, 410078, Changsha, People’s Republic of China
    291 rdf:type schema:Organization
    292 https://www.grid.ac/institutes/grid.412016.0 schema:alternateName University of Kansas Medical Center
    293 schema:name University of Kansas Medical Center, 66160, Kansas City, KS, USA
    294 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...