The complete mitogenome of Orcula dolium (Draparnaud, 1801); ultra-deep sequencing from a single long-range PCR using the Ion-Torrent PGM View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

D. S. J. Groenenberg, J. Harl, E. Duijm, E. Gittenberger

ABSTRACT

BACKGROUND: With the increasing capacity of present-day next-generation sequencers the field of mitogenomics is rapidly changing. Enrichment of the mitochondrial fraction, is no longer necessary for obtaining mitogenomic data. Despite the benefits, shotgun sequencing approaches also have disadvantages. They do not guarantee obtaining the complete mitogenome, generally require larger amounts of input DNA and coverage is low compared to sequencing with enrichment strategies. If the mitogenome could be amplified in a single amplification, additional time and costs for sample preparation might outweigh these disadvantages. RESULTS: A sequence of the complete mitochondrial genome of the pupilloid landsnail Orcula dolium is presented. The mitogenome was amplified in a single long-range (LR) PCR and sequenced on an Ion Torrent PGM (Life Technologies). The length is 14,063 nt and the average depth of coverage is 1112 X. This is the first published mitogenome for a member of the family Orculidae. It has the typical metazoan makeup of 13 protein coding genes (PCGs), 2 ribosomal RNAs (12S and 16S) and 22 transfer RNAs (tRNAs). Orcula is positioned between Pupilla and the Vertiginidae as the sister-group of Gastrocopta and Vertigo, together. An ancestral gene order reconstruction shows that Orthurethra in contrast to other Stylommatophora, have tRNA-H before tRNA-G and that the gene order in the 'non-achatinoid' clade is identical to that of closely related non-stylommatophoran taxa. CONCLUSIONS: We show it is feasible to ultra-deep sequence a mitogenome from a single LR-PCR. This approach is particularly relevant to studies that have low concentrations of input DNA. It results in a more efficient use of NGS capacity (only the targeted fraction is sequenced) and is an effective selection against nuclear mitochondrial inserts (NUMTS). In contrast to previous studies based in particular on 28S, our results indicate that phylogeny reconstructions based on complete mitogenomes might be more suitable to resolve deep relationships within Stylommatophora. Ancestral gene order reconstructions reveal rearrangements that characterize systematic groups. More... »

PAGES

7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s41065-017-0028-2

DOI

http://dx.doi.org/10.1186/s41065-017-0028-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084612775

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28396619


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Mitochondrial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Order", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Mitochondrial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Snails", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Naturalis Biodiversity Center", 
          "id": "https://www.grid.ac/institutes/grid.425948.6", 
          "name": [
            "Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Groenenberg", 
        "givenName": "D. S. J.", 
        "id": "sg:person.014032426234.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032426234.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shinshu University", 
          "id": "https://www.grid.ac/institutes/grid.263518.b", 
          "name": [
            "Central Research Laboratories, Museum of Natural History Vienna, Vienna, Austria", 
            "Department of Biology, Shinshu University, Matsumoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harl", 
        "givenName": "J.", 
        "id": "sg:person.01300150111.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300150111.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Naturalis Biodiversity Center", 
          "id": "https://www.grid.ac/institutes/grid.425948.6", 
          "name": [
            "Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duijm", 
        "givenName": "E.", 
        "id": "sg:person.014015732531.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014015732531.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Naturalis Biodiversity Center", 
          "id": "https://www.grid.ac/institutes/grid.425948.6", 
          "name": [
            "Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gittenberger", 
        "givenName": "E.", 
        "id": "sg:person.01364545067.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364545067.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2148-11-295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000228779", 
          "https://doi.org/10.1186/1471-2148-11-295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0096012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002769627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2016.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003699773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-13-114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004319081", 
          "https://doi.org/10.1186/1471-2164-13-114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0067299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005593165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/v10085-009-0045-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012880874", 
          "https://doi.org/10.2478/v10085-009-0045-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2004.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013626357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.margen.2010.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014437373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3897/zookeys.589.7637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014555146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2014.05.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015415373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2013.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016820159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2000.1372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017294407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/19401736.2014.930833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017585564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msv111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018225816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mollus/eym030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019769507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mollus/eyn023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020404163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023830050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msu154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025789366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-8-61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025840626", 
          "https://doi.org/10.1186/1471-2148-8-61"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02198842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026549683", 
          "https://doi.org/10.1007/bf02198842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02198842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026549683", 
          "https://doi.org/10.1007/bf02198842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02198842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026549683", 
          "https://doi.org/10.1007/bf02198842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/19401736.2015.1074207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027210554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0062404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028689889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/gabp0701081m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030042895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032121658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mollus/eyu025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034601003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mollus/62.1.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034926487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/19401736.2014.953083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035118350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/23802359.2016.1149787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036481282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037148423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-38036-5_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037583688", 
          "https://doi.org/10.1007/978-3-642-38036-5_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037623568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5347(00)01967-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038024600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2013.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039346133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mollus/eyv034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041790029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041908090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2012.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043651301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2010.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044159929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-10-323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045719727", 
          "https://doi.org/10.1186/1471-2148-10-323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0074-02762010000400027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047452138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2011.08.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047625414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2011.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048062454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3897/zookeys.451.8537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049280476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/mss020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050975111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/genomea.01362-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051989230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052288599", 
          "https://doi.org/10.1186/1471-2105-9-212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0042172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053443870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1095-8312.2006.00596.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053541256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03009480510013060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058316358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03009480510013060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058316358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2012.0021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059246094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mollus/eyw017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059924257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1645/ge-284r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068180407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/19401736.2015.1053070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079106554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082387341", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082548824", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083055276", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/gce.2010.5676129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094315180"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: With the increasing capacity of present-day next-generation sequencers the field of mitogenomics is rapidly changing. Enrichment of the mitochondrial fraction, is no longer necessary for obtaining mitogenomic data. Despite the benefits, shotgun sequencing approaches also have disadvantages. They do not guarantee obtaining the complete mitogenome, generally require larger amounts of input DNA and coverage is low compared to sequencing with enrichment strategies. If the mitogenome could be amplified in a single amplification, additional time and costs for sample preparation might outweigh these disadvantages.\nRESULTS: A sequence of the complete mitochondrial genome of the pupilloid landsnail Orcula dolium is presented. The mitogenome was amplified in a single long-range (LR) PCR and sequenced on an Ion Torrent PGM (Life Technologies). The length is 14,063\u00a0nt and the average depth of coverage is 1112 X. This is the first published mitogenome for a member of the family Orculidae. It has the typical metazoan makeup of 13 protein coding genes (PCGs), 2 ribosomal RNAs (12S and 16S) and 22 transfer RNAs (tRNAs). Orcula is positioned between Pupilla and the Vertiginidae as the sister-group of Gastrocopta and Vertigo, together. An ancestral gene order reconstruction shows that Orthurethra in contrast to other Stylommatophora, have tRNA-H before tRNA-G and that the gene order in the 'non-achatinoid' clade is identical to that of closely related non-stylommatophoran taxa.\nCONCLUSIONS: We show it is feasible to ultra-deep sequence a mitogenome from a single LR-PCR. This approach is particularly relevant to studies that have low concentrations of input DNA. It results in a more efficient use of NGS capacity (only the targeted fraction is sequenced) and is an effective selection against nuclear mitochondrial inserts (NUMTS). In contrast to previous studies based in particular on 28S, our results indicate that phylogeny reconstructions based on complete mitogenomes might be more suitable to resolve deep relationships within Stylommatophora. Ancestral gene order reconstructions reveal rearrangements that characterize systematic groups.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s41065-017-0028-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017631", 
        "issn": [
          "0018-0661", 
          "1601-5223"
        ], 
        "name": "Hereditas", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "154"
      }
    ], 
    "name": "The complete mitogenome of Orcula dolium (Draparnaud, 1801); ultra-deep sequencing from a single long-range PCR using the Ion-Torrent PGM", 
    "pagination": "7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ac442b818dcbc0c0e0a1ddb257f32690b8cc9ff179c961a0d3e3ddfdd72c2c2c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28396619"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0374654"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s41065-017-0028-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084612775"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s41065-017-0028-2", 
      "https://app.dimensions.ai/details/publication/pub.1084612775"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113639_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs41065-017-0028-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41065-017-0028-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41065-017-0028-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41065-017-0028-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41065-017-0028-2'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      21 PREDICATES      96 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s41065-017-0028-2 schema:about N3a6918e16a0646e0a3ae86f49d7ab4a8
2 N3fe65741947246afbaa2cd710a498696
3 N45cb9aa853174cf08d531e31f139c47d
4 N5d4c30f8ea1247b39621401abe3474a8
5 N6539930224e8480c8db5e32cf6da3857
6 N663b6c60780d46d7ac7b1bff99d1158b
7 N83ada78fd719412098e013899fc13a7a
8 N922be5fa69514bdaa61a8380f6ab35d0
9 Naf6d3f42f7d847c8844d8da476336c50
10 Nb354bf1066284e238a132bfab63719ca
11 Ne5b7268323c443e7869276a708d136a9
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N79ff7a13e1054274843a5a810ee3bb95
15 schema:citation sg:pub.10.1007/978-3-642-38036-5_6
16 sg:pub.10.1007/bf02198842
17 sg:pub.10.1186/1471-2105-9-212
18 sg:pub.10.1186/1471-2148-10-323
19 sg:pub.10.1186/1471-2148-11-295
20 sg:pub.10.1186/1471-2148-8-61
21 sg:pub.10.1186/1471-2164-13-114
22 sg:pub.10.2478/v10085-009-0045-0
23 https://app.dimensions.ai/details/publication/pub.1082387341
24 https://app.dimensions.ai/details/publication/pub.1082548824
25 https://app.dimensions.ai/details/publication/pub.1083055276
26 https://doi.org/10.1016/j.gene.2013.10.005
27 https://doi.org/10.1016/j.margen.2010.12.006
28 https://doi.org/10.1016/j.ympev.2004.06.008
29 https://doi.org/10.1016/j.ympev.2010.09.012
30 https://doi.org/10.1016/j.ympev.2011.02.014
31 https://doi.org/10.1016/j.ympev.2011.08.024
32 https://doi.org/10.1016/j.ympev.2012.08.023
33 https://doi.org/10.1016/j.ympev.2013.07.001
34 https://doi.org/10.1016/j.ympev.2014.05.031
35 https://doi.org/10.1016/j.ympev.2016.08.016
36 https://doi.org/10.1016/s0169-5347(00)01967-4
37 https://doi.org/10.1080/03009480510013060
38 https://doi.org/10.1080/23802359.2016.1149787
39 https://doi.org/10.1089/cmb.2012.0021
40 https://doi.org/10.1093/bioinformatics/btm573
41 https://doi.org/10.1093/bioinformatics/bts199
42 https://doi.org/10.1093/molbev/mss020
43 https://doi.org/10.1093/molbev/msu154
44 https://doi.org/10.1093/molbev/msv111
45 https://doi.org/10.1093/mollus/62.1.65
46 https://doi.org/10.1093/mollus/eym030
47 https://doi.org/10.1093/mollus/eyn023
48 https://doi.org/10.1093/mollus/eyu025
49 https://doi.org/10.1093/mollus/eyv034
50 https://doi.org/10.1093/mollus/eyw017
51 https://doi.org/10.1093/nar/gkq291
52 https://doi.org/10.1093/nar/gkt371
53 https://doi.org/10.1093/oxfordjournals.molbev.a026334
54 https://doi.org/10.1098/rspb.2000.1372
55 https://doi.org/10.1109/gce.2010.5676129
56 https://doi.org/10.1111/j.1095-8312.2006.00596.x
57 https://doi.org/10.1128/genomea.01362-15
58 https://doi.org/10.1371/journal.pone.0042172
59 https://doi.org/10.1371/journal.pone.0062404
60 https://doi.org/10.1371/journal.pone.0067299
61 https://doi.org/10.1371/journal.pone.0096012
62 https://doi.org/10.1590/s0074-02762010000400027
63 https://doi.org/10.1645/ge-284r
64 https://doi.org/10.2298/gabp0701081m
65 https://doi.org/10.3109/19401736.2014.930833
66 https://doi.org/10.3109/19401736.2014.953083
67 https://doi.org/10.3109/19401736.2015.1053070
68 https://doi.org/10.3109/19401736.2015.1074207
69 https://doi.org/10.3897/zookeys.451.8537
70 https://doi.org/10.3897/zookeys.589.7637
71 schema:datePublished 2017-12
72 schema:datePublishedReg 2017-12-01
73 schema:description BACKGROUND: With the increasing capacity of present-day next-generation sequencers the field of mitogenomics is rapidly changing. Enrichment of the mitochondrial fraction, is no longer necessary for obtaining mitogenomic data. Despite the benefits, shotgun sequencing approaches also have disadvantages. They do not guarantee obtaining the complete mitogenome, generally require larger amounts of input DNA and coverage is low compared to sequencing with enrichment strategies. If the mitogenome could be amplified in a single amplification, additional time and costs for sample preparation might outweigh these disadvantages. RESULTS: A sequence of the complete mitochondrial genome of the pupilloid landsnail Orcula dolium is presented. The mitogenome was amplified in a single long-range (LR) PCR and sequenced on an Ion Torrent PGM (Life Technologies). The length is 14,063 nt and the average depth of coverage is 1112 X. This is the first published mitogenome for a member of the family Orculidae. It has the typical metazoan makeup of 13 protein coding genes (PCGs), 2 ribosomal RNAs (12S and 16S) and 22 transfer RNAs (tRNAs). Orcula is positioned between Pupilla and the Vertiginidae as the sister-group of Gastrocopta and Vertigo, together. An ancestral gene order reconstruction shows that Orthurethra in contrast to other Stylommatophora, have tRNA-H before tRNA-G and that the gene order in the 'non-achatinoid' clade is identical to that of closely related non-stylommatophoran taxa. CONCLUSIONS: We show it is feasible to ultra-deep sequence a mitogenome from a single LR-PCR. This approach is particularly relevant to studies that have low concentrations of input DNA. It results in a more efficient use of NGS capacity (only the targeted fraction is sequenced) and is an effective selection against nuclear mitochondrial inserts (NUMTS). In contrast to previous studies based in particular on 28S, our results indicate that phylogeny reconstructions based on complete mitogenomes might be more suitable to resolve deep relationships within Stylommatophora. Ancestral gene order reconstructions reveal rearrangements that characterize systematic groups.
74 schema:genre research_article
75 schema:inLanguage en
76 schema:isAccessibleForFree true
77 schema:isPartOf N18c70700c6024e42b59a455dc9b885fd
78 N95b9454a9e254131b20dea09a0ffe276
79 sg:journal.1017631
80 schema:name The complete mitogenome of Orcula dolium (Draparnaud, 1801); ultra-deep sequencing from a single long-range PCR using the Ion-Torrent PGM
81 schema:pagination 7
82 schema:productId N23e1fdc786724e399bf899e3b04675e5
83 N8e950b9fe1f44afaa2b2d141d047c551
84 N98f8d94e1865420fb187dcd9069ece92
85 Ndfb9641d48194bd5b77fae40d98b06c8
86 Nea7fb07d198c422ab5962c0415f7d060
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084612775
88 https://doi.org/10.1186/s41065-017-0028-2
89 schema:sdDatePublished 2019-04-11T10:27
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Ne6bf423a1af04ed186da860926bdfb24
92 schema:url https://link.springer.com/10.1186%2Fs41065-017-0028-2
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N03a6f00032d54d33b769db8d5c2b8bc3 rdf:first sg:person.01364545067.13
97 rdf:rest rdf:nil
98 N18c70700c6024e42b59a455dc9b885fd schema:issueNumber 1
99 rdf:type schema:PublicationIssue
100 N23e1fdc786724e399bf899e3b04675e5 schema:name doi
101 schema:value 10.1186/s41065-017-0028-2
102 rdf:type schema:PropertyValue
103 N3a6918e16a0646e0a3ae86f49d7ab4a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Snails
105 rdf:type schema:DefinedTerm
106 N3fe65741947246afbaa2cd710a498696 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Phylogeny
108 rdf:type schema:DefinedTerm
109 N45cb9aa853174cf08d531e31f139c47d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Sequence Analysis, DNA
111 rdf:type schema:DefinedTerm
112 N5d4c30f8ea1247b39621401abe3474a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Gene Order
114 rdf:type schema:DefinedTerm
115 N5d6d8eab3b974f6abdf9e62ce65df2a7 rdf:first sg:person.014015732531.88
116 rdf:rest N03a6f00032d54d33b769db8d5c2b8bc3
117 N6539930224e8480c8db5e32cf6da3857 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Animals
119 rdf:type schema:DefinedTerm
120 N663b6c60780d46d7ac7b1bff99d1158b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Polymerase Chain Reaction
122 rdf:type schema:DefinedTerm
123 N79ff7a13e1054274843a5a810ee3bb95 rdf:first sg:person.014032426234.46
124 rdf:rest Nd51ed65bfd744f5799a13c4cd1ba0321
125 N83ada78fd719412098e013899fc13a7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name RNA, Ribosomal
127 rdf:type schema:DefinedTerm
128 N8e950b9fe1f44afaa2b2d141d047c551 schema:name readcube_id
129 schema:value ac442b818dcbc0c0e0a1ddb257f32690b8cc9ff179c961a0d3e3ddfdd72c2c2c
130 rdf:type schema:PropertyValue
131 N922be5fa69514bdaa61a8380f6ab35d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name High-Throughput Nucleotide Sequencing
133 rdf:type schema:DefinedTerm
134 N95b9454a9e254131b20dea09a0ffe276 schema:volumeNumber 154
135 rdf:type schema:PublicationVolume
136 N98f8d94e1865420fb187dcd9069ece92 schema:name dimensions_id
137 schema:value pub.1084612775
138 rdf:type schema:PropertyValue
139 Naf6d3f42f7d847c8844d8da476336c50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name RNA, Transfer
141 rdf:type schema:DefinedTerm
142 Nb354bf1066284e238a132bfab63719ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Genome, Mitochondrial
144 rdf:type schema:DefinedTerm
145 Nd51ed65bfd744f5799a13c4cd1ba0321 rdf:first sg:person.01300150111.50
146 rdf:rest N5d6d8eab3b974f6abdf9e62ce65df2a7
147 Ndfb9641d48194bd5b77fae40d98b06c8 schema:name nlm_unique_id
148 schema:value 0374654
149 rdf:type schema:PropertyValue
150 Ne5b7268323c443e7869276a708d136a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name DNA, Mitochondrial
152 rdf:type schema:DefinedTerm
153 Ne6bf423a1af04ed186da860926bdfb24 schema:name Springer Nature - SN SciGraph project
154 rdf:type schema:Organization
155 Nea7fb07d198c422ab5962c0415f7d060 schema:name pubmed_id
156 schema:value 28396619
157 rdf:type schema:PropertyValue
158 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
159 schema:name Biological Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
162 schema:name Genetics
163 rdf:type schema:DefinedTerm
164 sg:journal.1017631 schema:issn 0018-0661
165 1601-5223
166 schema:name Hereditas
167 rdf:type schema:Periodical
168 sg:person.01300150111.50 schema:affiliation https://www.grid.ac/institutes/grid.263518.b
169 schema:familyName Harl
170 schema:givenName J.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300150111.50
172 rdf:type schema:Person
173 sg:person.01364545067.13 schema:affiliation https://www.grid.ac/institutes/grid.425948.6
174 schema:familyName Gittenberger
175 schema:givenName E.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364545067.13
177 rdf:type schema:Person
178 sg:person.014015732531.88 schema:affiliation https://www.grid.ac/institutes/grid.425948.6
179 schema:familyName Duijm
180 schema:givenName E.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014015732531.88
182 rdf:type schema:Person
183 sg:person.014032426234.46 schema:affiliation https://www.grid.ac/institutes/grid.425948.6
184 schema:familyName Groenenberg
185 schema:givenName D. S. J.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032426234.46
187 rdf:type schema:Person
188 sg:pub.10.1007/978-3-642-38036-5_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037583688
189 https://doi.org/10.1007/978-3-642-38036-5_6
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/bf02198842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026549683
192 https://doi.org/10.1007/bf02198842
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2105-9-212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052288599
195 https://doi.org/10.1186/1471-2105-9-212
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/1471-2148-10-323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045719727
198 https://doi.org/10.1186/1471-2148-10-323
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/1471-2148-11-295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000228779
201 https://doi.org/10.1186/1471-2148-11-295
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/1471-2148-8-61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025840626
204 https://doi.org/10.1186/1471-2148-8-61
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/1471-2164-13-114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004319081
207 https://doi.org/10.1186/1471-2164-13-114
208 rdf:type schema:CreativeWork
209 sg:pub.10.2478/v10085-009-0045-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012880874
210 https://doi.org/10.2478/v10085-009-0045-0
211 rdf:type schema:CreativeWork
212 https://app.dimensions.ai/details/publication/pub.1082387341 schema:CreativeWork
213 https://app.dimensions.ai/details/publication/pub.1082548824 schema:CreativeWork
214 https://app.dimensions.ai/details/publication/pub.1083055276 schema:CreativeWork
215 https://doi.org/10.1016/j.gene.2013.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039346133
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.margen.2010.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014437373
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.ympev.2004.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013626357
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.ympev.2010.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044159929
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.ympev.2011.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048062454
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.ympev.2011.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047625414
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.ympev.2012.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043651301
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.ympev.2013.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016820159
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.ympev.2014.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015415373
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.ympev.2016.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003699773
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/s0169-5347(00)01967-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038024600
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1080/03009480510013060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058316358
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1080/23802359.2016.1149787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036481282
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1089/cmb.2012.0021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059246094
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/bioinformatics/btm573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041908090
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/bioinformatics/bts199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037623568
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/molbev/mss020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050975111
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/molbev/msu154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025789366
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/molbev/msv111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018225816
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/mollus/62.1.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034926487
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1093/mollus/eym030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019769507
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1093/mollus/eyn023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020404163
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1093/mollus/eyu025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034601003
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1093/mollus/eyv034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041790029
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1093/mollus/eyw017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059924257
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1093/nar/gkq291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032121658
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1093/nar/gkt371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023830050
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1093/oxfordjournals.molbev.a026334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037148423
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1098/rspb.2000.1372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017294407
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1109/gce.2010.5676129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094315180
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1111/j.1095-8312.2006.00596.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053541256
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1128/genomea.01362-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051989230
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1371/journal.pone.0042172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053443870
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1371/journal.pone.0062404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028689889
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1371/journal.pone.0067299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005593165
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1371/journal.pone.0096012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002769627
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1590/s0074-02762010000400027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047452138
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1645/ge-284r schema:sameAs https://app.dimensions.ai/details/publication/pub.1068180407
290 rdf:type schema:CreativeWork
291 https://doi.org/10.2298/gabp0701081m schema:sameAs https://app.dimensions.ai/details/publication/pub.1030042895
292 rdf:type schema:CreativeWork
293 https://doi.org/10.3109/19401736.2014.930833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017585564
294 rdf:type schema:CreativeWork
295 https://doi.org/10.3109/19401736.2014.953083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035118350
296 rdf:type schema:CreativeWork
297 https://doi.org/10.3109/19401736.2015.1053070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079106554
298 rdf:type schema:CreativeWork
299 https://doi.org/10.3109/19401736.2015.1074207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027210554
300 rdf:type schema:CreativeWork
301 https://doi.org/10.3897/zookeys.451.8537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049280476
302 rdf:type schema:CreativeWork
303 https://doi.org/10.3897/zookeys.589.7637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014555146
304 rdf:type schema:CreativeWork
305 https://www.grid.ac/institutes/grid.263518.b schema:alternateName Shinshu University
306 schema:name Central Research Laboratories, Museum of Natural History Vienna, Vienna, Austria
307 Department of Biology, Shinshu University, Matsumoto, Japan
308 rdf:type schema:Organization
309 https://www.grid.ac/institutes/grid.425948.6 schema:alternateName Naturalis Biodiversity Center
310 schema:name Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...