Validation of the trauma mortality prediction scores from a Malaysian population View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Jih Huei Tan, Henry Chor Lip Tan, Nur Azlin Md Noh, Yuzaidi Mohamad, Rizal Imran Alwi

ABSTRACT

Background: Well-known trauma mortality prediction scores such as New Injury Severity Score (NISS), Revised Trauma Score (RTS), and Trauma and Injury Severity Score (TRISS) have been externally validated from high-income countries with established trauma databases. However, these scores were never used in Malaysian population. In this current study, we attempted to validate these scoring systems using our regional trauma surgery database. Methods: A retrospective analysis of the regional Malaysian Trauma Surgery Database was performed over a period of 3 years from May 2011 to April 2014. NISS, RTS, Major Trauma Outcome Study (MTOS)-TRISS, and National Trauma Database (NTrD)-TRISS scores were recorded and calculated. Individual scoring system's performance in predicting trauma mortality was compared by calculating the area under the receiver operating characteristic (AUC) curve. Youden index and associated optimal cutoff values for each scoring system was calculated to predict mortality. The corresponding positive predictive value, negative predictive value, and accuracy of the cutoff values were calculated. Results: A total of 2208 trauma patients (2004 blunt and 204 penetrating injuries) with mean age of 36 (SD = 16) years were included. There were 239 deaths with a corresponding mortality rate of 10.8%. The AUC calculated for the NISS, RTS, MTOS-TRISS, and NTrD-TRISS were 0.878, 0.802, 0.812, and 0.848, respectively. The NISS score with a cutoff value of 24, sensitivity of 86.6% and specificity of 74.3%, outperformed the rest (p < 0.001). Mortality was predicted by NISS with an overall accuracy of 75.6%; its positive predictive value was at 29.02% and negative predictive value at 97.86%. Conclusion: Amongst the four scores, the NISS score is the best trauma mortality prediction model suited for a local Malaysian trauma population. Further validation with multicentre data in the country may require to ascertain the finding. More... »

PAGES

37

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s41038-017-0102-z

DOI

http://dx.doi.org/10.1186/s41038-017-0102-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099894451

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29299483


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University Kebangsaan Malaysia Medical Centre", 
          "id": "https://www.grid.ac/institutes/grid.240541.6", 
          "name": [
            "General Surgery Department, Hospital Sultanah Aminah, Johor Bahru, Malaysia", 
            "Pusat Perubatan Universiti Kebangsaan Malaysia, Cheras, Malaysia", 
            "Clinical Research Centre, Hospital Sultan Ismail, Johor Bahru, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Jih Huei", 
        "id": "sg:person.015101242150.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101242150.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Kebangsaan Malaysia Medical Centre", 
          "id": "https://www.grid.ac/institutes/grid.240541.6", 
          "name": [
            "General Surgery Department, Hospital Sultanah Aminah, Johor Bahru, Malaysia", 
            "Pusat Perubatan Universiti Kebangsaan Malaysia, Cheras, Malaysia", 
            "Clinical Research Centre, Hospital Sultan Ismail, Johor Bahru, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Henry Chor Lip", 
        "id": "sg:person.016141675300.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016141675300.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sultanah Aminah Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413461.5", 
          "name": [
            "General Surgery Department, Hospital Sultanah Aminah, Johor Bahru, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noh", 
        "givenName": "Nur Azlin Md", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sultanah Aminah Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413461.5", 
          "name": [
            "General Surgery Department, Hospital Sultanah Aminah, Johor Bahru, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohamad", 
        "givenName": "Yuzaidi", 
        "id": "sg:person.07506063547.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07506063547.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sultanah Aminah Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413461.5", 
          "name": [
            "General Surgery Department, Hospital Sultanah Aminah, Johor Bahru, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alwi", 
        "givenName": "Rizal Imran", 
        "id": "sg:person.0770347006.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770347006.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/ta.0000000000000460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002932964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ta.0000000000000460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002932964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005373-197403000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002985088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005373-197403000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002985088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.injury.2016.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003726079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ta.0b013e3181d3223b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005236882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ta.0b013e3181d3223b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005236882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ta.0b013e3181d3223b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005236882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005373-198905000-00017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005809579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005373-198905000-00017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005809579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jamcollsurg.2005.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007397242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bja/aeu242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008445898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.injury.2013.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010332003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0305-4179(83)90077-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011115780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005373-198704000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013312600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005373-198704000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013312600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ta.0b013e31819d96d8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018218322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ta.0b013e31819d96d8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018218322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ta.0b013e31819d96d8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018218322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118482117.ch4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018639729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005373-199011000-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019311422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005373-199011000-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019311422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.200710415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020016436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0885066613507691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029541935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0885066613507691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029541935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ta.0000152551.39400.6f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029796388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ta.0000152551.39400.6f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029796388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118482117.index", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031290888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.e5166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035863296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042027170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042027170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ta.0b013e31829880a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044529188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ta.0b013e31829880a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044529188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ede.0000147512.81966.ba", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045686615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ede.0000147512.81966.ba", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045686615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1460408616655836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048768959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1460408616655836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048768959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005373-199712000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060209201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005373-199712000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060209201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005373-199712000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060209201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5505/tjtes.2014.22725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072928503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078028747", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/tsaco-2016-000070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085784593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/tsaco-2016-000070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085784593"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Background: Well-known trauma mortality prediction scores such as New Injury Severity Score (NISS), Revised Trauma Score (RTS), and Trauma and Injury Severity Score (TRISS) have been externally validated from high-income countries with established trauma databases.\u00a0However, these scores were never used in Malaysian population. In this current study, we attempted to validate these scoring systems using our regional trauma surgery database.\nMethods: A retrospective analysis of the regional Malaysian Trauma Surgery Database was performed over a period of 3\u00a0years\u00a0from May 2011 to April 2014. NISS, RTS, Major Trauma Outcome Study (MTOS)-TRISS, and National Trauma Database (NTrD)-TRISS scores were recorded and calculated. Individual scoring system's performance in predicting trauma mortality was compared by calculating the area under the receiver operating characteristic (AUC)\u00a0curve. Youden index and associated optimal cutoff values for each scoring system was calculated to predict mortality. The corresponding positive predictive value, negative predictive value, and accuracy of the cutoff values were calculated.\nResults: A total of 2208 trauma patients (2004 blunt and 204 penetrating injuries) with mean age of 36 (SD\u2009=\u200916) years were included. There were 239 deaths with a corresponding mortality rate of 10.8%. The AUC calculated for the NISS, RTS, MTOS-TRISS, and NTrD-TRISS were 0.878, 0.802, 0.812, and 0.848, respectively. The NISS score with a cutoff value of 24, sensitivity of 86.6% and specificity of 74.3%, outperformed the rest (p\u2009<\u20090.001). Mortality was predicted by NISS with an overall accuracy of 75.6%; its positive predictive value was at 29.02% and negative predictive value at 97.86%.\nConclusion: Amongst the four scores, the NISS score is the best trauma mortality prediction model suited for a local Malaysian trauma population. Further validation with multicentre data in the country may require to ascertain the finding.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s41038-017-0102-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1051384", 
        "issn": [
          "2321-3868", 
          "2321-3876"
        ], 
        "name": "Burns & Trauma", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Validation of the trauma mortality prediction scores from a Malaysian population", 
    "pagination": "37", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "013f63d608bbb534e8fbd0d3d2c8f65d1fe52a1917036d9f2dbeab24d274a28a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29299483"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101651457"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s41038-017-0102-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099894451"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s41038-017-0102-z", 
      "https://app.dimensions.ai/details/publication/pub.1099894451"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/s41038-017-0102-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s41038-017-0102-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s41038-017-0102-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s41038-017-0102-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s41038-017-0102-z'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s41038-017-0102-z schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N7e4eee6250a14f21b9c5753cfd8c26eb
4 schema:citation https://app.dimensions.ai/details/publication/pub.1078028747
5 https://doi.org/10.1002/9781118482117.ch4
6 https://doi.org/10.1002/9781118482117.index
7 https://doi.org/10.1002/bimj.200710415
8 https://doi.org/10.1002/sim.4044
9 https://doi.org/10.1016/0305-4179(83)90077-3
10 https://doi.org/10.1016/j.injury.2013.02.003
11 https://doi.org/10.1016/j.injury.2016.12.009
12 https://doi.org/10.1016/j.jamcollsurg.2005.07.013
13 https://doi.org/10.1093/bja/aeu242
14 https://doi.org/10.1097/00005373-197403000-00001
15 https://doi.org/10.1097/00005373-198704000-00005
16 https://doi.org/10.1097/00005373-198905000-00017
17 https://doi.org/10.1097/00005373-199011000-00008
18 https://doi.org/10.1097/00005373-199712000-00009
19 https://doi.org/10.1097/01.ede.0000147512.81966.ba
20 https://doi.org/10.1097/01.ta.0000152551.39400.6f
21 https://doi.org/10.1097/ta.0000000000000460
22 https://doi.org/10.1097/ta.0b013e31819d96d8
23 https://doi.org/10.1097/ta.0b013e3181d3223b
24 https://doi.org/10.1097/ta.0b013e31829880a0
25 https://doi.org/10.1136/bmj.e5166
26 https://doi.org/10.1136/tsaco-2016-000070
27 https://doi.org/10.1177/0885066613507691
28 https://doi.org/10.1177/1460408616655836
29 https://doi.org/10.5505/tjtes.2014.22725
30 schema:datePublished 2017-12
31 schema:datePublishedReg 2017-12-01
32 schema:description Background: Well-known trauma mortality prediction scores such as New Injury Severity Score (NISS), Revised Trauma Score (RTS), and Trauma and Injury Severity Score (TRISS) have been externally validated from high-income countries with established trauma databases. However, these scores were never used in Malaysian population. In this current study, we attempted to validate these scoring systems using our regional trauma surgery database. Methods: A retrospective analysis of the regional Malaysian Trauma Surgery Database was performed over a period of 3 years from May 2011 to April 2014. NISS, RTS, Major Trauma Outcome Study (MTOS)-TRISS, and National Trauma Database (NTrD)-TRISS scores were recorded and calculated. Individual scoring system's performance in predicting trauma mortality was compared by calculating the area under the receiver operating characteristic (AUC) curve. Youden index and associated optimal cutoff values for each scoring system was calculated to predict mortality. The corresponding positive predictive value, negative predictive value, and accuracy of the cutoff values were calculated. Results: A total of 2208 trauma patients (2004 blunt and 204 penetrating injuries) with mean age of 36 (SD = 16) years were included. There were 239 deaths with a corresponding mortality rate of 10.8%. The AUC calculated for the NISS, RTS, MTOS-TRISS, and NTrD-TRISS were 0.878, 0.802, 0.812, and 0.848, respectively. The NISS score with a cutoff value of 24, sensitivity of 86.6% and specificity of 74.3%, outperformed the rest (p < 0.001). Mortality was predicted by NISS with an overall accuracy of 75.6%; its positive predictive value was at 29.02% and negative predictive value at 97.86%. Conclusion: Amongst the four scores, the NISS score is the best trauma mortality prediction model suited for a local Malaysian trauma population. Further validation with multicentre data in the country may require to ascertain the finding.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N80a604093aca4af5bb4905f8a6fb903f
37 Nf08e45d79e8f4c0c9d3989815b678b2d
38 sg:journal.1051384
39 schema:name Validation of the trauma mortality prediction scores from a Malaysian population
40 schema:pagination 37
41 schema:productId N1bc1b7f731174029b5199f6b788578cd
42 N3a817e5e8daf4f018a8c48fc5f159059
43 Na330a6c9d24b4f76ba1ea3d0e544d416
44 Nc3f0db8f0ddc47b6978aedbc4926dd04
45 Nf439e8fe81084911adb65cd74aafa3ec
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099894451
47 https://doi.org/10.1186/s41038-017-0102-z
48 schema:sdDatePublished 2019-04-10T21:30
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Ndcef5bc8e08c4dd6955d113ac1e48223
51 schema:url http://link.springer.com/10.1186/s41038-017-0102-z
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N1bc1b7f731174029b5199f6b788578cd schema:name readcube_id
56 schema:value 013f63d608bbb534e8fbd0d3d2c8f65d1fe52a1917036d9f2dbeab24d274a28a
57 rdf:type schema:PropertyValue
58 N1e0f45660eed49469555e16b3dca1808 rdf:first sg:person.07506063547.09
59 rdf:rest N4438202d17e145109b845ba383eab9d5
60 N3270c1408b0547288a977681733a3874 rdf:first N3c4a16615e8543d885edda728751c6bc
61 rdf:rest N1e0f45660eed49469555e16b3dca1808
62 N3a817e5e8daf4f018a8c48fc5f159059 schema:name pubmed_id
63 schema:value 29299483
64 rdf:type schema:PropertyValue
65 N3c4a16615e8543d885edda728751c6bc schema:affiliation https://www.grid.ac/institutes/grid.413461.5
66 schema:familyName Noh
67 schema:givenName Nur Azlin Md
68 rdf:type schema:Person
69 N4438202d17e145109b845ba383eab9d5 rdf:first sg:person.0770347006.95
70 rdf:rest rdf:nil
71 N7e4eee6250a14f21b9c5753cfd8c26eb rdf:first sg:person.015101242150.03
72 rdf:rest Nc080aebe2f4b4440a55916b6575e91d3
73 N80a604093aca4af5bb4905f8a6fb903f schema:volumeNumber 5
74 rdf:type schema:PublicationVolume
75 Na330a6c9d24b4f76ba1ea3d0e544d416 schema:name doi
76 schema:value 10.1186/s41038-017-0102-z
77 rdf:type schema:PropertyValue
78 Nc080aebe2f4b4440a55916b6575e91d3 rdf:first sg:person.016141675300.85
79 rdf:rest N3270c1408b0547288a977681733a3874
80 Nc3f0db8f0ddc47b6978aedbc4926dd04 schema:name nlm_unique_id
81 schema:value 101651457
82 rdf:type schema:PropertyValue
83 Ndcef5bc8e08c4dd6955d113ac1e48223 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nf08e45d79e8f4c0c9d3989815b678b2d schema:issueNumber 1
86 rdf:type schema:PublicationIssue
87 Nf439e8fe81084911adb65cd74aafa3ec schema:name dimensions_id
88 schema:value pub.1099894451
89 rdf:type schema:PropertyValue
90 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
91 schema:name Medical and Health Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
94 schema:name Clinical Sciences
95 rdf:type schema:DefinedTerm
96 sg:journal.1051384 schema:issn 2321-3868
97 2321-3876
98 schema:name Burns & Trauma
99 rdf:type schema:Periodical
100 sg:person.015101242150.03 schema:affiliation https://www.grid.ac/institutes/grid.240541.6
101 schema:familyName Tan
102 schema:givenName Jih Huei
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101242150.03
104 rdf:type schema:Person
105 sg:person.016141675300.85 schema:affiliation https://www.grid.ac/institutes/grid.240541.6
106 schema:familyName Tan
107 schema:givenName Henry Chor Lip
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016141675300.85
109 rdf:type schema:Person
110 sg:person.07506063547.09 schema:affiliation https://www.grid.ac/institutes/grid.413461.5
111 schema:familyName Mohamad
112 schema:givenName Yuzaidi
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07506063547.09
114 rdf:type schema:Person
115 sg:person.0770347006.95 schema:affiliation https://www.grid.ac/institutes/grid.413461.5
116 schema:familyName Alwi
117 schema:givenName Rizal Imran
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770347006.95
119 rdf:type schema:Person
120 https://app.dimensions.ai/details/publication/pub.1078028747 schema:CreativeWork
121 https://doi.org/10.1002/9781118482117.ch4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018639729
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/9781118482117.index schema:sameAs https://app.dimensions.ai/details/publication/pub.1031290888
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/bimj.200710415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020016436
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/sim.4044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042027170
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0305-4179(83)90077-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011115780
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.injury.2013.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010332003
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.injury.2016.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003726079
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.jamcollsurg.2005.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007397242
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1093/bja/aeu242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008445898
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1097/00005373-197403000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002985088
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1097/00005373-198704000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013312600
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1097/00005373-198905000-00017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005809579
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1097/00005373-199011000-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019311422
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1097/00005373-199712000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060209201
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1097/01.ede.0000147512.81966.ba schema:sameAs https://app.dimensions.ai/details/publication/pub.1045686615
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1097/01.ta.0000152551.39400.6f schema:sameAs https://app.dimensions.ai/details/publication/pub.1029796388
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1097/ta.0000000000000460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002932964
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1097/ta.0b013e31819d96d8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018218322
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1097/ta.0b013e3181d3223b schema:sameAs https://app.dimensions.ai/details/publication/pub.1005236882
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1097/ta.0b013e31829880a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044529188
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1136/bmj.e5166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035863296
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1136/tsaco-2016-000070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085784593
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1177/0885066613507691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029541935
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1177/1460408616655836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048768959
168 rdf:type schema:CreativeWork
169 https://doi.org/10.5505/tjtes.2014.22725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072928503
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.240541.6 schema:alternateName University Kebangsaan Malaysia Medical Centre
172 schema:name Clinical Research Centre, Hospital Sultan Ismail, Johor Bahru, Malaysia
173 General Surgery Department, Hospital Sultanah Aminah, Johor Bahru, Malaysia
174 Pusat Perubatan Universiti Kebangsaan Malaysia, Cheras, Malaysia
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.413461.5 schema:alternateName Sultanah Aminah Hospital
177 schema:name General Surgery Department, Hospital Sultanah Aminah, Johor Bahru, Malaysia
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...