The quality management ecosystem for predictive maintenance in the Industry 4.0 era View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Sang M. Lee, DonHee Lee, Youn Sung Kim

ABSTRACT

The Industry 4.0 era requires new quality management systems due to the ever increasing complexity of the global business environment and the advent of advanced digital technologies. This study presents new ideas for predictive quality management based on an extensive review of the literature on quality management and five real-world cases of predictive quality management based on new technologies. The results of the study indicate that advanced technology enabled predictive maintenance can be applied in various industries by leveraging big data analytics, smart sensors, artificial intelligence (AI), and platform construction. Such predictive quality management systems can become living ecosystems that can perform cause-effect analysis, big data monitoring and analytics, and effective decision-making in real time. This study proposes several practical implications for actual design and implementation of effective predictive quality management systems in the Industry 4.0 era. However, the living predictive quality management ecosystem should be the product of the organizational culture that nurtures collaborative efforts of all stakeholders, sharing of information, and co-creation of shared goals. More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40887-019-0029-5

DOI

http://dx.doi.org/10.1186/s40887-019-0029-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113044151


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Nebraska\u2013Lincoln", 
          "id": "https://www.grid.ac/institutes/grid.24434.35", 
          "name": [
            "College of Business, University of Nebraska-Lincoln, Lincoln, NE, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sang M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inha University", 
          "id": "https://www.grid.ac/institutes/grid.202119.9", 
          "name": [
            "College of Business Administration, Inha University, Incheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "DonHee", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inha University", 
          "id": "https://www.grid.ac/institutes/grid.202119.9", 
          "name": [
            "College of Business Administration, Inha University, Incheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Youn Sung", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cie.2015.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023259262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2004.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030862241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcde.2014.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034805776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40887-015-0002-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044165590", 
          "https://doi.org/10.1186/s40887-015-0002-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40887-015-0002-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044165590", 
          "https://doi.org/10.1186/s40887-015-0002-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tii.2014.2349359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061632536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/ijqrm-08-2016-0141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090449610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40887-018-0022-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101502951", 
          "https://doi.org/10.1186/s40887-018-0022-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40887-018-0022-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101502951", 
          "https://doi.org/10.1186/s40887-018-0022-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40887-018-0022-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101502951", 
          "https://doi.org/10.1186/s40887-018-0022-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40887-018-0022-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101502951", 
          "https://doi.org/10.1186/s40887-018-0022-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The Industry 4.0 era requires new quality management systems due to the ever increasing complexity of the global business environment and the advent of advanced digital technologies. This study presents new ideas for predictive quality management based on an extensive review of the literature on quality management and five real-world cases of predictive quality management based on new technologies. The results of the study indicate that advanced technology enabled predictive maintenance can be applied in various industries by leveraging big data analytics, smart sensors, artificial intelligence (AI), and platform construction. Such predictive quality management systems can become living ecosystems that can perform cause-effect analysis, big data monitoring and analytics, and effective decision-making in real time. This study proposes several practical implications for actual design and implementation of effective predictive quality management systems in the Industry 4.0 era. However, the living predictive quality management ecosystem should be the product of the organizational culture that nurtures collaborative efforts of all stakeholders, sharing of information, and co-creation of shared goals.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1186/s40887-019-0029-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136001", 
        "issn": [
          "2363-7021"
        ], 
        "name": "International Journal of Quality Innovation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "The quality management ecosystem for predictive maintenance in the Industry 4.0 era", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5eeae40e58f1c113eb178180f71d2a40edbc74fe81932add03217e225f8b4154"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40887-019-0029-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113044151"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40887-019-0029-5", 
      "https://app.dimensions.ai/details/publication/pub.1113044151"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78968_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40887-019-0029-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40887-019-0029-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40887-019-0029-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40887-019-0029-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40887-019-0029-5'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40887-019-0029-5 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N193c20a3e38f41c09b10994cf0daae1a
4 schema:citation sg:pub.10.1186/s40887-015-0002-x
5 sg:pub.10.1186/s40887-018-0022-4
6 https://doi.org/10.1016/j.cie.2015.12.016
7 https://doi.org/10.1016/j.ijmachtools.2004.02.004
8 https://doi.org/10.1016/j.jcde.2014.12.006
9 https://doi.org/10.1108/ijqrm-08-2016-0141
10 https://doi.org/10.1109/tii.2014.2349359
11 schema:datePublished 2019-12
12 schema:datePublishedReg 2019-12-01
13 schema:description The Industry 4.0 era requires new quality management systems due to the ever increasing complexity of the global business environment and the advent of advanced digital technologies. This study presents new ideas for predictive quality management based on an extensive review of the literature on quality management and five real-world cases of predictive quality management based on new technologies. The results of the study indicate that advanced technology enabled predictive maintenance can be applied in various industries by leveraging big data analytics, smart sensors, artificial intelligence (AI), and platform construction. Such predictive quality management systems can become living ecosystems that can perform cause-effect analysis, big data monitoring and analytics, and effective decision-making in real time. This study proposes several practical implications for actual design and implementation of effective predictive quality management systems in the Industry 4.0 era. However, the living predictive quality management ecosystem should be the product of the organizational culture that nurtures collaborative efforts of all stakeholders, sharing of information, and co-creation of shared goals.
14 schema:genre non_research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N649b4db6aff7488e8766cf4c71853679
18 Nd64ef1c7d04840319ca349c7129ab737
19 sg:journal.1136001
20 schema:name The quality management ecosystem for predictive maintenance in the Industry 4.0 era
21 schema:pagination 4
22 schema:productId N1e44ba1d65264c6caed05f03cfcf176b
23 N3e6ee153f36a419fb66e56af43af2719
24 Nedf79e74143a41d9b64098d63451d29e
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113044151
26 https://doi.org/10.1186/s40887-019-0029-5
27 schema:sdDatePublished 2019-04-11T13:20
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Nb3358e6c7bee4e3fa1ddd115856fa499
30 schema:url https://link.springer.com/10.1186%2Fs40887-019-0029-5
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N062b465e587344af91a8e92d3443ed8d rdf:first Nc9c2217da6bd472591d263cb07eeffd1
35 rdf:rest rdf:nil
36 N193c20a3e38f41c09b10994cf0daae1a rdf:first N4e15bada12aa4f5dbe30dc3d162c12cd
37 rdf:rest N99924bca4ad24bf3aa6486f984dc1549
38 N1e44ba1d65264c6caed05f03cfcf176b schema:name doi
39 schema:value 10.1186/s40887-019-0029-5
40 rdf:type schema:PropertyValue
41 N3e6ee153f36a419fb66e56af43af2719 schema:name readcube_id
42 schema:value 5eeae40e58f1c113eb178180f71d2a40edbc74fe81932add03217e225f8b4154
43 rdf:type schema:PropertyValue
44 N4e15bada12aa4f5dbe30dc3d162c12cd schema:affiliation https://www.grid.ac/institutes/grid.24434.35
45 schema:familyName Lee
46 schema:givenName Sang M.
47 rdf:type schema:Person
48 N649b4db6aff7488e8766cf4c71853679 schema:volumeNumber 5
49 rdf:type schema:PublicationVolume
50 N94cec58f4072401caa8c28af2bbb0d2f schema:affiliation https://www.grid.ac/institutes/grid.202119.9
51 schema:familyName Lee
52 schema:givenName DonHee
53 rdf:type schema:Person
54 N99924bca4ad24bf3aa6486f984dc1549 rdf:first N94cec58f4072401caa8c28af2bbb0d2f
55 rdf:rest N062b465e587344af91a8e92d3443ed8d
56 Nb3358e6c7bee4e3fa1ddd115856fa499 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nc9c2217da6bd472591d263cb07eeffd1 schema:affiliation https://www.grid.ac/institutes/grid.202119.9
59 schema:familyName Kim
60 schema:givenName Youn Sung
61 rdf:type schema:Person
62 Nd64ef1c7d04840319ca349c7129ab737 schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 Nedf79e74143a41d9b64098d63451d29e schema:name dimensions_id
65 schema:value pub.1113044151
66 rdf:type schema:PropertyValue
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information Systems
72 rdf:type schema:DefinedTerm
73 sg:journal.1136001 schema:issn 2363-7021
74 schema:name International Journal of Quality Innovation
75 rdf:type schema:Periodical
76 sg:pub.10.1186/s40887-015-0002-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044165590
77 https://doi.org/10.1186/s40887-015-0002-x
78 rdf:type schema:CreativeWork
79 sg:pub.10.1186/s40887-018-0022-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101502951
80 https://doi.org/10.1186/s40887-018-0022-4
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/j.cie.2015.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023259262
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/j.ijmachtools.2004.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030862241
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/j.jcde.2014.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034805776
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1108/ijqrm-08-2016-0141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090449610
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1109/tii.2014.2349359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061632536
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.202119.9 schema:alternateName Inha University
93 schema:name College of Business Administration, Inha University, Incheon, South Korea
94 rdf:type schema:Organization
95 https://www.grid.ac/institutes/grid.24434.35 schema:alternateName University of Nebraska–Lincoln
96 schema:name College of Business, University of Nebraska-Lincoln, Lincoln, NE, USA
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...