The quality management ecosystem for predictive maintenance in the Industry 4.0 era View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Sang M. Lee, DonHee Lee, Youn Sung Kim

ABSTRACT

The Industry 4.0 era requires new quality management systems due to the ever increasing complexity of the global business environment and the advent of advanced digital technologies. This study presents new ideas for predictive quality management based on an extensive review of the literature on quality management and five real-world cases of predictive quality management based on new technologies. The results of the study indicate that advanced technology enabled predictive maintenance can be applied in various industries by leveraging big data analytics, smart sensors, artificial intelligence (AI), and platform construction. Such predictive quality management systems can become living ecosystems that can perform cause-effect analysis, big data monitoring and analytics, and effective decision-making in real time. This study proposes several practical implications for actual design and implementation of effective predictive quality management systems in the Industry 4.0 era. However, the living predictive quality management ecosystem should be the product of the organizational culture that nurtures collaborative efforts of all stakeholders, sharing of information, and co-creation of shared goals. More... »

PAGES

4

References to SciGraph publications

  • 2018-12. Innovation: from small “i” to large “I” in INTERNATIONAL JOURNAL OF QUALITY INNOVATION
  • 2015-12. The age of quality innovation in INTERNATIONAL JOURNAL OF QUALITY INNOVATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40887-019-0029-5

    DOI

    http://dx.doi.org/10.1186/s40887-019-0029-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113044151


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Nebraska\u2013Lincoln", 
              "id": "https://www.grid.ac/institutes/grid.24434.35", 
              "name": [
                "College of Business, University of Nebraska-Lincoln, Lincoln, NE, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Sang M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Inha University", 
              "id": "https://www.grid.ac/institutes/grid.202119.9", 
              "name": [
                "College of Business Administration, Inha University, Incheon, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "DonHee", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Inha University", 
              "id": "https://www.grid.ac/institutes/grid.202119.9", 
              "name": [
                "College of Business Administration, Inha University, Incheon, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Youn Sung", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.cie.2015.12.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023259262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2004.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030862241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcde.2014.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034805776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40887-015-0002-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044165590", 
              "https://doi.org/10.1186/s40887-015-0002-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40887-015-0002-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044165590", 
              "https://doi.org/10.1186/s40887-015-0002-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tii.2014.2349359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061632536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/ijqrm-08-2016-0141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090449610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40887-018-0022-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101502951", 
              "https://doi.org/10.1186/s40887-018-0022-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40887-018-0022-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101502951", 
              "https://doi.org/10.1186/s40887-018-0022-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40887-018-0022-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101502951", 
              "https://doi.org/10.1186/s40887-018-0022-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40887-018-0022-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101502951", 
              "https://doi.org/10.1186/s40887-018-0022-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "The Industry 4.0 era requires new quality management systems due to the ever increasing complexity of the global business environment and the advent of advanced digital technologies. This study presents new ideas for predictive quality management based on an extensive review of the literature on quality management and five real-world cases of predictive quality management based on new technologies. The results of the study indicate that advanced technology enabled predictive maintenance can be applied in various industries by leveraging big data analytics, smart sensors, artificial intelligence (AI), and platform construction. Such predictive quality management systems can become living ecosystems that can perform cause-effect analysis, big data monitoring and analytics, and effective decision-making in real time. This study proposes several practical implications for actual design and implementation of effective predictive quality management systems in the Industry 4.0 era. However, the living predictive quality management ecosystem should be the product of the organizational culture that nurtures collaborative efforts of all stakeholders, sharing of information, and co-creation of shared goals.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1186/s40887-019-0029-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136001", 
            "issn": [
              "2363-7021"
            ], 
            "name": "International Journal of Quality Innovation", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "name": "The quality management ecosystem for predictive maintenance in the Industry 4.0 era", 
        "pagination": "4", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5eeae40e58f1c113eb178180f71d2a40edbc74fe81932add03217e225f8b4154"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40887-019-0029-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113044151"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40887-019-0029-5", 
          "https://app.dimensions.ai/details/publication/pub.1113044151"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78968_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs40887-019-0029-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40887-019-0029-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40887-019-0029-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40887-019-0029-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40887-019-0029-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    97 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40887-019-0029-5 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N3e5e95559e674c38bfc1b72f4e84088e
    4 schema:citation sg:pub.10.1186/s40887-015-0002-x
    5 sg:pub.10.1186/s40887-018-0022-4
    6 https://doi.org/10.1016/j.cie.2015.12.016
    7 https://doi.org/10.1016/j.ijmachtools.2004.02.004
    8 https://doi.org/10.1016/j.jcde.2014.12.006
    9 https://doi.org/10.1108/ijqrm-08-2016-0141
    10 https://doi.org/10.1109/tii.2014.2349359
    11 schema:datePublished 2019-12
    12 schema:datePublishedReg 2019-12-01
    13 schema:description The Industry 4.0 era requires new quality management systems due to the ever increasing complexity of the global business environment and the advent of advanced digital technologies. This study presents new ideas for predictive quality management based on an extensive review of the literature on quality management and five real-world cases of predictive quality management based on new technologies. The results of the study indicate that advanced technology enabled predictive maintenance can be applied in various industries by leveraging big data analytics, smart sensors, artificial intelligence (AI), and platform construction. Such predictive quality management systems can become living ecosystems that can perform cause-effect analysis, big data monitoring and analytics, and effective decision-making in real time. This study proposes several practical implications for actual design and implementation of effective predictive quality management systems in the Industry 4.0 era. However, the living predictive quality management ecosystem should be the product of the organizational culture that nurtures collaborative efforts of all stakeholders, sharing of information, and co-creation of shared goals.
    14 schema:genre non_research_article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N73eaa8dc4a0549978be22f0bf3a8a3fb
    18 N85b43ec9de8b485d94908008948b4992
    19 sg:journal.1136001
    20 schema:name The quality management ecosystem for predictive maintenance in the Industry 4.0 era
    21 schema:pagination 4
    22 schema:productId Nc01f22206967421db5c540d5c8af2331
    23 Nc2bbc6196b7d458fae89a71eec0c11a2
    24 Ndb088b87330043c3b3136a32ace42555
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113044151
    26 https://doi.org/10.1186/s40887-019-0029-5
    27 schema:sdDatePublished 2019-04-11T13:20
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher N1c8721f16ffe4ab5a16cc38d31ab5a1e
    30 schema:url https://link.springer.com/10.1186%2Fs40887-019-0029-5
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset articles
    33 rdf:type schema:ScholarlyArticle
    34 N168500f3eb88460c80836f7373e74e15 schema:affiliation https://www.grid.ac/institutes/grid.24434.35
    35 schema:familyName Lee
    36 schema:givenName Sang M.
    37 rdf:type schema:Person
    38 N1c8721f16ffe4ab5a16cc38d31ab5a1e schema:name Springer Nature - SN SciGraph project
    39 rdf:type schema:Organization
    40 N2c527a415da34b4da4f6c77fa55c3abd rdf:first Nc3c0f22621fc4a7bacdd975ca776ec3e
    41 rdf:rest rdf:nil
    42 N3e5e95559e674c38bfc1b72f4e84088e rdf:first N168500f3eb88460c80836f7373e74e15
    43 rdf:rest N9ece095a91734485960f51edca5bc6a6
    44 N73eaa8dc4a0549978be22f0bf3a8a3fb schema:volumeNumber 5
    45 rdf:type schema:PublicationVolume
    46 N85b43ec9de8b485d94908008948b4992 schema:issueNumber 1
    47 rdf:type schema:PublicationIssue
    48 N9ece095a91734485960f51edca5bc6a6 rdf:first Nfac65980ecf441f4a59efac67d87ca29
    49 rdf:rest N2c527a415da34b4da4f6c77fa55c3abd
    50 Nc01f22206967421db5c540d5c8af2331 schema:name doi
    51 schema:value 10.1186/s40887-019-0029-5
    52 rdf:type schema:PropertyValue
    53 Nc2bbc6196b7d458fae89a71eec0c11a2 schema:name readcube_id
    54 schema:value 5eeae40e58f1c113eb178180f71d2a40edbc74fe81932add03217e225f8b4154
    55 rdf:type schema:PropertyValue
    56 Nc3c0f22621fc4a7bacdd975ca776ec3e schema:affiliation https://www.grid.ac/institutes/grid.202119.9
    57 schema:familyName Kim
    58 schema:givenName Youn Sung
    59 rdf:type schema:Person
    60 Ndb088b87330043c3b3136a32ace42555 schema:name dimensions_id
    61 schema:value pub.1113044151
    62 rdf:type schema:PropertyValue
    63 Nfac65980ecf441f4a59efac67d87ca29 schema:affiliation https://www.grid.ac/institutes/grid.202119.9
    64 schema:familyName Lee
    65 schema:givenName DonHee
    66 rdf:type schema:Person
    67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Information and Computing Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Information Systems
    72 rdf:type schema:DefinedTerm
    73 sg:journal.1136001 schema:issn 2363-7021
    74 schema:name International Journal of Quality Innovation
    75 rdf:type schema:Periodical
    76 sg:pub.10.1186/s40887-015-0002-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044165590
    77 https://doi.org/10.1186/s40887-015-0002-x
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1186/s40887-018-0022-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101502951
    80 https://doi.org/10.1186/s40887-018-0022-4
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1016/j.cie.2015.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023259262
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/j.ijmachtools.2004.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030862241
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1016/j.jcde.2014.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034805776
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1108/ijqrm-08-2016-0141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090449610
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1109/tii.2014.2349359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061632536
    91 rdf:type schema:CreativeWork
    92 https://www.grid.ac/institutes/grid.202119.9 schema:alternateName Inha University
    93 schema:name College of Business Administration, Inha University, Incheon, South Korea
    94 rdf:type schema:Organization
    95 https://www.grid.ac/institutes/grid.24434.35 schema:alternateName University of Nebraska–Lincoln
    96 schema:name College of Business, University of Nebraska-Lincoln, Lincoln, NE, USA
    97 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...