Identification of genetic alterations associated with primary resistance to EGFR-TKIs in advanced non-small-cell lung cancer patients with EGFR sensitive mutations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Fang Wang, Xia-Yao Diao, Xiao Zhang, Qiong Shao, Yan-Fen Feng, Xin An, Hai-Yun Wang

ABSTRACT

BACKGROUND: Identification of activated epidermal growth factor receptor (EGFR) mutations and application of EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have greatly changed the therapeutic strategies of non-small-cell lung cancer (NSCLC). However, the long-term efficacy of EGFR-TKI therapy is limited due to the development of drug resistance. The aim of this study was to investigate the correlation between the aberrant alterations of 8 driver genes and the primary resistance to EGFR-TKIs in advanced NSCLC patients with activated EGFR mutations. METHODS: We retrospectively reviewed the clinical data from 416 patients with stage III/IV or recurrent NSCLC who received an initial EGFR-TKI treatment, from April 2004 and March 2011, at the Sun Yat-sen University Cancer Center. Several genetic alterations associated with the efficacy of EGFR-TKIs, including the alterations in BIM, ALK, KRAS, PIK3CA, PTEN, MET, IGF1R, and ROS1, were detected by the routine clinical technologies. The progression-free survival (PFS) and overall survival (OS) were compared between different groups using Kaplan-Meier survival analysis with the log-rank test. A Cox regression model was used to estimate multivariable-adjusted hazard ratios (HRs) and their 95% confidence intervals (95% CIs) associated with the PFS and OS. RESULTS: Among the investigated patients, 169 NSCLC patients harbored EGFR-sensitive mutations. EGFR-mutant patients having PTEN deletion had a shorter PFS and OS than those with intact PTEN (P = 0.003 for PFS, and P = 0.034 for OS). In the combined molecular analysis of EGFR signaling pathway and resistance genes, we found that EGFR-mutant patients coexisted with aberrant alterations in EGFR signaling pathway and those having resistant genes had a statistically poorer PFS than those without such alterations (P < 0.001). A Cox proportional regression model determined that PTEN deletion (HR = 4.29,95% CI = 1.72-10.70) and low PTEN expression (HR = 1.96, 95% CI = 1.22-3.13), MET FISH + (HR = 2.83,95% CI = 1.37-5.86) were independent predictors for PFS in patients with EGFR-TKI treatment after adjustment for multiple factor. CONCLUSIONS: We determined that the coexistence of genetic alterations in cancer genes may explain primary resistance to EGFR-TKIs. More... »

PAGES

7

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40880-019-0354-z

DOI

http://dx.doi.org/10.1186/s40880-019-0354-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112466836

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30823937


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.488530.2", 
          "name": [
            "State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, Guangdong, P.R. China", 
            "Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, 510060, Guangzhou, Guangdong, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Fang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412536.7", 
          "name": [
            "Department of Urology, Sun Yat-sen Memorial Hospital, 510120, Guangzhou, Guangdong, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diao", 
        "givenName": "Xia-Yao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.488530.2", 
          "name": [
            "Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, 510060, Guangzhou, Guangdong, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.488530.2", 
          "name": [
            "Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, 510060, Guangzhou, Guangdong, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shao", 
        "givenName": "Qiong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.488530.2", 
          "name": [
            "State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, Guangdong, P.R. China", 
            "Department of Pathology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, Guangdong, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Yan-Fen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.488530.2", 
          "name": [
            "Department of Medical Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, Guangdong, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "An", 
        "givenName": "Xin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.488530.2", 
          "name": [
            "State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, Guangdong, P.R. China", 
            "Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, 510060, Guangzhou, Guangdong, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Hai-Yun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1470-2045(11)70393-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004429924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00280-009-1174-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006349313", 
          "https://doi.org/10.1007/s00280-009-1174-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00280-009-1174-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006349313", 
          "https://doi.org/10.1007/s00280-009-1174-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00280-009-1174-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006349313", 
          "https://doi.org/10.1007/s00280-009-1174-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/his.12396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007619675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdn635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008680195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e3181f38f57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011026999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdt127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011782989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdl077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011989460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e318240ca0d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012754713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1677/erc.1.00799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015606139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1677/erc.1.00799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015606139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-08-4055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016460820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.humpath.2013.10.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017733003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mds214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019179559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(11)70184-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019948065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0810699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020150048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-13-0928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020171521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdt418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020256254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1141478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023671304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa044238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025668991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2015.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026912141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2011.38.3224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027769303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.2713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028536763", 
          "https://doi.org/10.1038/nm.2713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.22.6993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029152747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-10-0208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032160654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/92.3.205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032301848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032628685", 
          "https://doi.org/10.1038/nrc2088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2009.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033302817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(14)71173-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036794393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e3181ce3d1d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039150278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-11-3351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042635752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-5876-11-90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045232414", 
          "https://doi.org/10.1186/1479-5876-11-90"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0048004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045771111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(09)70364-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046378249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0909530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047104724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13402-013-0133-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049325422", 
          "https://doi.org/10.1007/s13402-013-0133-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.08-0978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050660634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e3181cee47e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052423370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2012.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053257294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074976743", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cllc.2017.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085070796"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Identification of activated epidermal growth factor receptor (EGFR) mutations and application of EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have greatly changed the therapeutic strategies of non-small-cell lung cancer (NSCLC). However, the long-term efficacy of EGFR-TKI therapy is limited due to the development of drug resistance. The aim of this study was to investigate the correlation between the aberrant alterations of 8 driver genes and the primary resistance to EGFR-TKIs in advanced NSCLC patients with activated EGFR mutations.\nMETHODS: We retrospectively reviewed the clinical data from 416 patients with stage III/IV or recurrent NSCLC who received an initial EGFR-TKI treatment, from April 2004 and March 2011, at the Sun Yat-sen University Cancer Center. Several genetic alterations associated with the efficacy of EGFR-TKIs, including the alterations in BIM, ALK, KRAS, PIK3CA, PTEN, MET, IGF1R, and ROS1, were detected by the routine clinical technologies. The progression-free survival (PFS) and overall survival (OS) were compared between different groups using Kaplan-Meier survival analysis with the log-rank test. A Cox regression model was used to estimate multivariable-adjusted hazard ratios (HRs) and their 95% confidence intervals (95% CIs) associated with the PFS and OS.\nRESULTS: Among the investigated patients, 169 NSCLC patients harbored EGFR-sensitive mutations. EGFR-mutant patients having PTEN deletion had a shorter PFS and OS than those with intact PTEN (P\u2009=\u20090.003 for PFS, and P\u2009=\u20090.034 for OS). In the combined molecular analysis of EGFR signaling pathway and resistance genes, we found that EGFR-mutant patients coexisted with aberrant alterations in EGFR signaling pathway and those having resistant genes had a statistically poorer PFS than those without such alterations (P\u2009<\u20090.001). A Cox proportional regression model determined that PTEN deletion (HR\u2009=\u20094.29,95% CI\u2009=\u20091.72-10.70) and low PTEN expression (HR\u2009=\u20091.96, 95% CI\u2009=\u20091.22-3.13), MET FISH\u2009+\u2009(HR\u2009=\u20092.83,95% CI\u2009=\u20091.37-5.86) were independent predictors for PFS in patients with EGFR-TKI treatment after adjustment for multiple factor.\nCONCLUSIONS: We determined that the coexistence of genetic alterations in cancer genes may explain primary resistance to EGFR-TKIs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40880-019-0354-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1041144", 
        "issn": [
          "1000-467X", 
          "2523-3548"
        ], 
        "name": "Cancer Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "Identification of genetic alterations associated with primary resistance to EGFR-TKIs in advanced non-small-cell lung cancer patients with EGFR sensitive mutations", 
    "pagination": "7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "17d15f2ffed5b5abb46360ca5b2c0156db1479d5eeab84e62f9b39549cb1ff13"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30823937"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101723675"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40880-019-0354-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112466836"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40880-019-0354-z", 
      "https://app.dimensions.ai/details/publication/pub.1112466836"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78941_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40880-019-0354-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40880-019-0354-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40880-019-0354-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40880-019-0354-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40880-019-0354-z'


 

This table displays all metadata directly associated to this object as RDF triples.

231 TRIPLES      21 PREDICATES      68 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40880-019-0354-z schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N950a60a860d749409e9eb09e55ba263c
4 schema:citation sg:pub.10.1007/s00280-009-1174-7
5 sg:pub.10.1007/s13402-013-0133-9
6 sg:pub.10.1038/nm.2713
7 sg:pub.10.1038/nrc2088
8 sg:pub.10.1186/1479-5876-11-90
9 https://app.dimensions.ai/details/publication/pub.1074976743
10 https://doi.org/10.1016/j.ccr.2009.11.022
11 https://doi.org/10.1016/j.cllc.2017.04.006
12 https://doi.org/10.1016/j.humpath.2013.10.018
13 https://doi.org/10.1016/j.lungcan.2012.04.012
14 https://doi.org/10.1016/j.lungcan.2015.01.023
15 https://doi.org/10.1016/s1470-2045(09)70364-x
16 https://doi.org/10.1016/s1470-2045(11)70184-x
17 https://doi.org/10.1016/s1470-2045(11)70393-x
18 https://doi.org/10.1016/s1470-2045(14)71173-8
19 https://doi.org/10.1056/nejmoa044238
20 https://doi.org/10.1056/nejmoa0810699
21 https://doi.org/10.1056/nejmoa0909530
22 https://doi.org/10.1093/annonc/mdl077
23 https://doi.org/10.1093/annonc/mdn635
24 https://doi.org/10.1093/annonc/mds214
25 https://doi.org/10.1093/annonc/mdt127
26 https://doi.org/10.1093/annonc/mdt418
27 https://doi.org/10.1093/jnci/92.3.205
28 https://doi.org/10.1097/jto.0b013e3181ce3d1d
29 https://doi.org/10.1097/jto.0b013e3181cee47e
30 https://doi.org/10.1097/jto.0b013e3181f38f57
31 https://doi.org/10.1097/jto.0b013e318240ca0d
32 https://doi.org/10.1111/his.12396
33 https://doi.org/10.1126/science.1141478
34 https://doi.org/10.1158/0008-5472.can-08-4055
35 https://doi.org/10.1158/1078-0432.ccr-10-0208
36 https://doi.org/10.1158/1078-0432.ccr-11-3351
37 https://doi.org/10.1158/1078-0432.ccr-13-0928
38 https://doi.org/10.1200/jco.2009.22.6993
39 https://doi.org/10.1200/jco.2011.38.3224
40 https://doi.org/10.1371/journal.pone.0048004
41 https://doi.org/10.1378/chest.08-0978
42 https://doi.org/10.1677/erc.1.00799
43 schema:datePublished 2019-12
44 schema:datePublishedReg 2019-12-01
45 schema:description BACKGROUND: Identification of activated epidermal growth factor receptor (EGFR) mutations and application of EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have greatly changed the therapeutic strategies of non-small-cell lung cancer (NSCLC). However, the long-term efficacy of EGFR-TKI therapy is limited due to the development of drug resistance. The aim of this study was to investigate the correlation between the aberrant alterations of 8 driver genes and the primary resistance to EGFR-TKIs in advanced NSCLC patients with activated EGFR mutations. METHODS: We retrospectively reviewed the clinical data from 416 patients with stage III/IV or recurrent NSCLC who received an initial EGFR-TKI treatment, from April 2004 and March 2011, at the Sun Yat-sen University Cancer Center. Several genetic alterations associated with the efficacy of EGFR-TKIs, including the alterations in BIM, ALK, KRAS, PIK3CA, PTEN, MET, IGF1R, and ROS1, were detected by the routine clinical technologies. The progression-free survival (PFS) and overall survival (OS) were compared between different groups using Kaplan-Meier survival analysis with the log-rank test. A Cox regression model was used to estimate multivariable-adjusted hazard ratios (HRs) and their 95% confidence intervals (95% CIs) associated with the PFS and OS. RESULTS: Among the investigated patients, 169 NSCLC patients harbored EGFR-sensitive mutations. EGFR-mutant patients having PTEN deletion had a shorter PFS and OS than those with intact PTEN (P = 0.003 for PFS, and P = 0.034 for OS). In the combined molecular analysis of EGFR signaling pathway and resistance genes, we found that EGFR-mutant patients coexisted with aberrant alterations in EGFR signaling pathway and those having resistant genes had a statistically poorer PFS than those without such alterations (P < 0.001). A Cox proportional regression model determined that PTEN deletion (HR = 4.29,95% CI = 1.72-10.70) and low PTEN expression (HR = 1.96, 95% CI = 1.22-3.13), MET FISH + (HR = 2.83,95% CI = 1.37-5.86) were independent predictors for PFS in patients with EGFR-TKI treatment after adjustment for multiple factor. CONCLUSIONS: We determined that the coexistence of genetic alterations in cancer genes may explain primary resistance to EGFR-TKIs.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N2e05f1ea501f4ed38a34df9b2c016efb
50 Nc5fd091f78414ab7a3bc0b6d7cde2c02
51 sg:journal.1041144
52 schema:name Identification of genetic alterations associated with primary resistance to EGFR-TKIs in advanced non-small-cell lung cancer patients with EGFR sensitive mutations
53 schema:pagination 7
54 schema:productId N093a1c603545475480db5920f0de42a8
55 N5f9723a29ef0478fb816c8125b3ce712
56 N6be9dda9462948ff85460cf855adac41
57 Nafbc97a1d03b4d779d96233e413a4643
58 Nd789c5af941b4bdab255b261993881ec
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112466836
60 https://doi.org/10.1186/s40880-019-0354-z
61 schema:sdDatePublished 2019-04-11T13:18
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N8069ae19fb9e47918e8040ec8c4c23f3
64 schema:url https://link.springer.com/10.1186%2Fs40880-019-0354-z
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N093a1c603545475480db5920f0de42a8 schema:name pubmed_id
69 schema:value 30823937
70 rdf:type schema:PropertyValue
71 N2e05f1ea501f4ed38a34df9b2c016efb schema:volumeNumber 39
72 rdf:type schema:PublicationVolume
73 N3797d49e27c148c29d8a5c3e551b24ee schema:affiliation https://www.grid.ac/institutes/grid.488530.2
74 schema:familyName Zhang
75 schema:givenName Xiao
76 rdf:type schema:Person
77 N48b8a83fb42a4791a65f55f9010faaad rdf:first N58dee82f74474ff0abb8e8073c04eedd
78 rdf:rest rdf:nil
79 N58dee82f74474ff0abb8e8073c04eedd schema:affiliation https://www.grid.ac/institutes/grid.488530.2
80 schema:familyName Wang
81 schema:givenName Hai-Yun
82 rdf:type schema:Person
83 N5f9723a29ef0478fb816c8125b3ce712 schema:name readcube_id
84 schema:value 17d15f2ffed5b5abb46360ca5b2c0156db1479d5eeab84e62f9b39549cb1ff13
85 rdf:type schema:PropertyValue
86 N67a7b6c8c0bc4eedaed453ba410b7518 rdf:first Ned719daacc7844649fe92ca1c0fadd27
87 rdf:rest Ne69fe082c37943baab1e87c445710794
88 N6be9dda9462948ff85460cf855adac41 schema:name nlm_unique_id
89 schema:value 101723675
90 rdf:type schema:PropertyValue
91 N7c8c9647301444459ea9ec370f62b146 rdf:first N3797d49e27c148c29d8a5c3e551b24ee
92 rdf:rest N67a7b6c8c0bc4eedaed453ba410b7518
93 N8069ae19fb9e47918e8040ec8c4c23f3 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N87e7ee7184454212b728b4f59a695f56 schema:affiliation https://www.grid.ac/institutes/grid.488530.2
96 schema:familyName Feng
97 schema:givenName Yan-Fen
98 rdf:type schema:Person
99 N9482e306d63e4887804460f1ec94063d rdf:first N9a840f3e636d475fb0e7ee8711c50594
100 rdf:rest N48b8a83fb42a4791a65f55f9010faaad
101 N950a60a860d749409e9eb09e55ba263c rdf:first Nfbd86c2e9f9c400284af5f3632057273
102 rdf:rest Nc2877749f05a440d96632a0dfed35759
103 N9a840f3e636d475fb0e7ee8711c50594 schema:affiliation https://www.grid.ac/institutes/grid.488530.2
104 schema:familyName An
105 schema:givenName Xin
106 rdf:type schema:Person
107 Nac722315d81d47248235b27cf9ab4bf9 schema:affiliation https://www.grid.ac/institutes/grid.412536.7
108 schema:familyName Diao
109 schema:givenName Xia-Yao
110 rdf:type schema:Person
111 Nafbc97a1d03b4d779d96233e413a4643 schema:name dimensions_id
112 schema:value pub.1112466836
113 rdf:type schema:PropertyValue
114 Nc2877749f05a440d96632a0dfed35759 rdf:first Nac722315d81d47248235b27cf9ab4bf9
115 rdf:rest N7c8c9647301444459ea9ec370f62b146
116 Nc5fd091f78414ab7a3bc0b6d7cde2c02 schema:issueNumber 1
117 rdf:type schema:PublicationIssue
118 Nd789c5af941b4bdab255b261993881ec schema:name doi
119 schema:value 10.1186/s40880-019-0354-z
120 rdf:type schema:PropertyValue
121 Ne69fe082c37943baab1e87c445710794 rdf:first N87e7ee7184454212b728b4f59a695f56
122 rdf:rest N9482e306d63e4887804460f1ec94063d
123 Ned719daacc7844649fe92ca1c0fadd27 schema:affiliation https://www.grid.ac/institutes/grid.488530.2
124 schema:familyName Shao
125 schema:givenName Qiong
126 rdf:type schema:Person
127 Nfbd86c2e9f9c400284af5f3632057273 schema:affiliation https://www.grid.ac/institutes/grid.488530.2
128 schema:familyName Wang
129 schema:givenName Fang
130 rdf:type schema:Person
131 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
132 schema:name Medical and Health Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
135 schema:name Oncology and Carcinogenesis
136 rdf:type schema:DefinedTerm
137 sg:journal.1041144 schema:issn 1000-467X
138 2523-3548
139 schema:name Cancer Communications
140 rdf:type schema:Periodical
141 sg:pub.10.1007/s00280-009-1174-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006349313
142 https://doi.org/10.1007/s00280-009-1174-7
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s13402-013-0133-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049325422
145 https://doi.org/10.1007/s13402-013-0133-9
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nm.2713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028536763
148 https://doi.org/10.1038/nm.2713
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nrc2088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032628685
151 https://doi.org/10.1038/nrc2088
152 rdf:type schema:CreativeWork
153 sg:pub.10.1186/1479-5876-11-90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045232414
154 https://doi.org/10.1186/1479-5876-11-90
155 rdf:type schema:CreativeWork
156 https://app.dimensions.ai/details/publication/pub.1074976743 schema:CreativeWork
157 https://doi.org/10.1016/j.ccr.2009.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033302817
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.cllc.2017.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085070796
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.humpath.2013.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017733003
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.lungcan.2012.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053257294
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.lungcan.2015.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026912141
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s1470-2045(09)70364-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046378249
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s1470-2045(11)70184-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019948065
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s1470-2045(11)70393-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004429924
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s1470-2045(14)71173-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036794393
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1056/nejmoa044238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025668991
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1056/nejmoa0810699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020150048
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1056/nejmoa0909530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047104724
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/annonc/mdl077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011989460
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/annonc/mdn635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008680195
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/annonc/mds214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019179559
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/annonc/mdt127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011782989
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/annonc/mdt418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020256254
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/jnci/92.3.205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032301848
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1097/jto.0b013e3181ce3d1d schema:sameAs https://app.dimensions.ai/details/publication/pub.1039150278
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1097/jto.0b013e3181cee47e schema:sameAs https://app.dimensions.ai/details/publication/pub.1052423370
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1097/jto.0b013e3181f38f57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011026999
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1097/jto.0b013e318240ca0d schema:sameAs https://app.dimensions.ai/details/publication/pub.1012754713
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1111/his.12396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007619675
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1126/science.1141478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023671304
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1158/0008-5472.can-08-4055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016460820
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1158/1078-0432.ccr-10-0208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032160654
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1158/1078-0432.ccr-11-3351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042635752
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1158/1078-0432.ccr-13-0928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020171521
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1200/jco.2009.22.6993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029152747
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1200/jco.2011.38.3224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027769303
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1371/journal.pone.0048004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045771111
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1378/chest.08-0978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050660634
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1677/erc.1.00799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015606139
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.412536.7 schema:alternateName Sun Yat-sen Memorial Hospital
224 schema:name Department of Urology, Sun Yat-sen Memorial Hospital, 510120, Guangzhou, Guangdong, P.R. China
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.488530.2 schema:alternateName Sun Yat-sen University Cancer Center
227 schema:name Department of Medical Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, Guangdong, P.R. China
228 Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, 510060, Guangzhou, Guangdong, P.R. China
229 Department of Pathology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, Guangdong, P.R. China
230 State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, Guangdong, P.R. China
231 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...