The prognostic and therapeutic implications of circulating tumor cell phenotype detection based on epithelial–mesenchymal transition markers in the first-line chemotherapy ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Xiuwen Guan, Fei Ma, Chunxiao Li, Shiyang Wu, Shangying Hu, Jiefen Huang, Xiaoying Sun, Jiayu Wang, Yang Luo, Ruigang Cai, Ying Fan, Qiao Li, Shanshan Chen, Pin Zhang, Qing Li, Binghe Xu

ABSTRACT

BACKGROUND: Epithelial-mesenchymal transition (EMT) is implicated in the metastatic process and presents a challenge to epithelial cell adhesion molecule-based detection of circulating tumor cells (CTCs), which have been demonstrated to be a prognostic indicator in metastatic breast cancer. Although evidence has indicated that heterogeneity of CTCs based on EMT markers is associated with disease progression, no standard recommendations have been established for clinical practice. This study aimed to evaluate the prognostic significance of dynamic CTC detection based on EMT for metastatic breast cancer patients. METHODS: We enrolled 108 human epidermal growth factor receptor 2-negative metastatic breast cancer patients from the prospective phase III CAMELLIA study and applied the CanPatrol CTC enrichment technique to identify CTC phenotypes (including epithelial CTCs, biphenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs) in peripheral blood samples. Receiver operating characteristic curve analyses of total CTC count and the proportion of mesenchymal CTCs for predicting the 1-year progression-free survival (PFS) rate were conducted to determine the optimal cut-off values, and Kaplan-Meier analysis and Cox proportional hazards regression analysis were performed to investigate the prognostic value of the cut-off values of both total CTC count and the proportion of mesenchymal CTCs in combination. RESULTS: For predicting the 1-year PFS rate, the optimal cut-off value of total CTC count was 9.5 (Area under the curve [AUC] = 0.538, 95% confidence interval [CI] = 0.418-0.657), and that of the proportion of mesenchymal CTCs was 10.7% (AUC = 0.581, 95% CI = 0.463-0.699). We used the two cut-off values in combination to forecast PFS in which the total CTC count was equaled to or exceeded 10/5 mL with the proportion of mesenchymal CTCs surpassed 10.7%. Patients who met the combined criteria had significantly shorter median PFS than did those who did not meet the criteria (6.2 vs. 9.9 months, P =0.010). A nomogram was constructed based on the criteria and significant clinicopathological characteristics with a C-index of 0.613 (P = 0.010). CONCLUSIONS: The criteria, which combine the total CTC count and the proportion of mesenchymal CTCs, may be used to monitor therapeutic resistance and predict prognosis in patients with metastatic breast cancer. Trial registration ClinicalTrials.gov. NCT01917279. Registered on 19 July 2013, https://clinicaltrials.gov/ct2/show/NCT01917279?term=NCT01917279&rank=1 . More... »

PAGES

1

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40880-018-0346-4

DOI

http://dx.doi.org/10.1186/s40880-018-0346-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111097144

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30606259


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Peking Union Medical College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413106.1", 
          "name": [
            "Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, 100021, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guan", 
        "givenName": "Xiuwen", 
        "id": "sg:person.011001421655.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011001421655.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking Union Medical College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413106.1", 
          "name": [
            "Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, 100021, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Fei", 
        "id": "sg:person.01354216534.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354216534.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking Union Medical College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413106.1", 
          "name": [
            "State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Chunxiao", 
        "id": "sg:person.01256302044.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256302044.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SurExam Bio-Tech, Guangzhou Technology Innovation Base, Science City, 510000, Guangzhou, Guangdong, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Shiyang", 
        "id": "sg:person.01300543255.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300543255.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking Union Medical College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413106.1", 
          "name": [
            "Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Shangying", 
        "id": "sg:person.016554470547.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016554470547.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SurExam Bio-Tech, Guangzhou Technology Innovation Base, Science City, 510000, Guangzhou, Guangdong, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Jiefen", 
        "id": "sg:person.012372155624.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012372155624.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Medical Oncology, Huanxing Cancer Hospital, 100021, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Xiaoying", 
        "id": "sg:person.015362264655.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015362264655.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking Union Medical College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413106.1", 
          "name": [
            "Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, 100021, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jiayu", 
        "id": "sg:person.01221113507.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221113507.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking Union Medical College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413106.1", 
          "name": [
            "Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, 100021, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Yang", 
        "id": "sg:person.0675765711.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675765711.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking Union Medical College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413106.1", 
          "name": [
            "Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, 100021, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Ruigang", 
        "id": "sg:person.01353256611.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353256611.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking Union Medical College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413106.1", 
          "name": [
            "Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, 100021, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Ying", 
        "id": "sg:person.01234513706.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234513706.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking Union Medical College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413106.1", 
          "name": [
            "Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, 100021, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Qiao", 
        "id": "sg:person.01345101206.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345101206.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking Union Medical College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413106.1", 
          "name": [
            "Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, 100021, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Shanshan", 
        "id": "sg:person.07430244331.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07430244331.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking Union Medical College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413106.1", 
          "name": [
            "Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, 100021, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Pin", 
        "id": "sg:person.01305143411.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305143411.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking Union Medical College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413106.1", 
          "name": [
            "Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, 100021, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Qing", 
        "id": "sg:person.01323035654.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323035654.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking Union Medical College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413106.1", 
          "name": [
            "Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, 100021, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Binghe", 
        "id": "sg:person.01033726014.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033726014.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1003743887", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1003743887", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc3820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004193947", 
          "https://doi.org/10.1038/nrc3820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.11787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005102182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2014.56.2561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007317943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-05-2821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009907076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1228522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013110936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdm558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013520815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1878-0261.12017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015505044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdu480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016229185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/dju066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016858313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djn419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019687043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13058-016-0687-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021300961", 
          "https://doi.org/10.1186/s13058-016-0687-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ctrv.2014.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021663690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0123976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026615613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-12-3137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026813541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-016-4026-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029629867", 
          "https://doi.org/10.1007/s10549-016-4026-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-016-4026-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029629867", 
          "https://doi.org/10.1007/s10549-016-4026-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-14-0894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032528374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa040766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037538258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrclinonc.2015.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048130166", 
          "https://doi.org/10.1038/nrclinonc.2015.131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15252/emmm.201404208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050600359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fonc.2015.00042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052399824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(14)70069-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052860888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/or.2013.2294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071532286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/or.2013.2294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071532286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdx156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085978913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-00196-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090952531", 
          "https://doi.org/10.1038/s41467-017-00196-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Epithelial-mesenchymal transition (EMT) is implicated in the metastatic process and presents a challenge to epithelial cell adhesion molecule-based detection of circulating tumor cells (CTCs), which have been demonstrated to be a prognostic indicator in metastatic breast cancer. Although evidence has indicated that heterogeneity of CTCs based on EMT markers is associated with disease progression, no standard recommendations have been established for clinical practice. This study aimed to evaluate the prognostic significance of dynamic CTC detection based on EMT for metastatic breast cancer patients.\nMETHODS: We enrolled 108 human epidermal growth factor receptor 2-negative metastatic breast cancer patients from the prospective phase III CAMELLIA study and applied the CanPatrol CTC enrichment technique to identify CTC phenotypes (including epithelial CTCs, biphenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs) in peripheral blood samples. Receiver operating characteristic curve analyses of total CTC count and the proportion of mesenchymal CTCs for predicting the 1-year progression-free survival (PFS) rate were conducted to determine the optimal cut-off values, and Kaplan-Meier analysis and Cox proportional hazards regression analysis were performed to investigate the prognostic value of the cut-off values of both total CTC count and the proportion of mesenchymal CTCs in combination.\nRESULTS: For predicting the 1-year PFS rate, the optimal cut-off value of total CTC count was 9.5 (Area under the curve [AUC]\u2009=\u20090.538, 95% confidence interval [CI]\u2009=\u20090.418-0.657), and that of the proportion of mesenchymal CTCs was 10.7% (AUC\u2009=\u20090.581, 95% CI\u2009=\u20090.463-0.699). We used the two cut-off values in combination to forecast PFS in which the total CTC count was equaled to or exceeded 10/5\u00a0mL with the proportion of mesenchymal CTCs surpassed 10.7%. Patients who met the combined criteria had significantly shorter median PFS than did those who did not meet the criteria (6.2 vs. 9.9\u00a0months, P\u2009=0.010). A nomogram was constructed based on the criteria and significant clinicopathological characteristics with a C-index of 0.613 (P\u2009=\u20090.010).\nCONCLUSIONS: The criteria, which combine the total CTC count and the proportion of mesenchymal CTCs, may be used to monitor therapeutic resistance and predict prognosis in patients with metastatic breast cancer. Trial registration ClinicalTrials.gov. NCT01917279. Registered on 19 July 2013, https://clinicaltrials.gov/ct2/show/NCT01917279?term=NCT01917279&rank=1 .", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40880-018-0346-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1041144", 
        "issn": [
          "1000-467X", 
          "2523-3548"
        ], 
        "name": "Cancer Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "The prognostic and therapeutic implications of circulating tumor cell phenotype detection based on epithelial\u2013mesenchymal transition markers in the first-line chemotherapy of HER2-negative metastatic breast cancer", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ef602549351aa30dcaccaaacffca21cb99490b0b85e55f34fa3a04395f4ff3a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30606259"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101723675"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40880-018-0346-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111097144"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40880-018-0346-4", 
      "https://app.dimensions.ai/details/publication/pub.1111097144"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87109_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40880-018-0346-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40880-018-0346-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40880-018-0346-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40880-018-0346-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40880-018-0346-4'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40880-018-0346-4 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author Nbf0b97c06940487990277d86cd45f756
4 schema:citation sg:pub.10.1007/s10549-016-4026-2
5 sg:pub.10.1038/nrc3820
6 sg:pub.10.1038/nrclinonc.2015.131
7 sg:pub.10.1038/s41467-017-00196-1
8 sg:pub.10.1186/s13058-016-0687-3
9 https://app.dimensions.ai/details/publication/pub.1003743887
10 https://doi.org/10.1002/1878-0261.12017
11 https://doi.org/10.1016/j.ctrv.2014.12.008
12 https://doi.org/10.1016/s1470-2045(14)70069-5
13 https://doi.org/10.1056/nejmoa040766
14 https://doi.org/10.1093/annonc/mdm558
15 https://doi.org/10.1093/annonc/mdu480
16 https://doi.org/10.1093/annonc/mdx156
17 https://doi.org/10.1093/jnci/djn419
18 https://doi.org/10.1093/jnci/dju066
19 https://doi.org/10.1126/science.1228522
20 https://doi.org/10.1158/1078-0432.ccr-05-2821
21 https://doi.org/10.1158/1078-0432.ccr-12-3137
22 https://doi.org/10.1158/1078-0432.ccr-14-0894
23 https://doi.org/10.1200/jco.2014.56.2561
24 https://doi.org/10.1371/journal.pone.0123976
25 https://doi.org/10.15252/emmm.201404208
26 https://doi.org/10.18632/oncotarget.11787
27 https://doi.org/10.3389/fonc.2015.00042
28 https://doi.org/10.3892/or.2013.2294
29 schema:datePublished 2019-12
30 schema:datePublishedReg 2019-12-01
31 schema:description BACKGROUND: Epithelial-mesenchymal transition (EMT) is implicated in the metastatic process and presents a challenge to epithelial cell adhesion molecule-based detection of circulating tumor cells (CTCs), which have been demonstrated to be a prognostic indicator in metastatic breast cancer. Although evidence has indicated that heterogeneity of CTCs based on EMT markers is associated with disease progression, no standard recommendations have been established for clinical practice. This study aimed to evaluate the prognostic significance of dynamic CTC detection based on EMT for metastatic breast cancer patients. METHODS: We enrolled 108 human epidermal growth factor receptor 2-negative metastatic breast cancer patients from the prospective phase III CAMELLIA study and applied the CanPatrol CTC enrichment technique to identify CTC phenotypes (including epithelial CTCs, biphenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs) in peripheral blood samples. Receiver operating characteristic curve analyses of total CTC count and the proportion of mesenchymal CTCs for predicting the 1-year progression-free survival (PFS) rate were conducted to determine the optimal cut-off values, and Kaplan-Meier analysis and Cox proportional hazards regression analysis were performed to investigate the prognostic value of the cut-off values of both total CTC count and the proportion of mesenchymal CTCs in combination. RESULTS: For predicting the 1-year PFS rate, the optimal cut-off value of total CTC count was 9.5 (Area under the curve [AUC] = 0.538, 95% confidence interval [CI] = 0.418-0.657), and that of the proportion of mesenchymal CTCs was 10.7% (AUC = 0.581, 95% CI = 0.463-0.699). We used the two cut-off values in combination to forecast PFS in which the total CTC count was equaled to or exceeded 10/5 mL with the proportion of mesenchymal CTCs surpassed 10.7%. Patients who met the combined criteria had significantly shorter median PFS than did those who did not meet the criteria (6.2 vs. 9.9 months, P =0.010). A nomogram was constructed based on the criteria and significant clinicopathological characteristics with a C-index of 0.613 (P = 0.010). CONCLUSIONS: The criteria, which combine the total CTC count and the proportion of mesenchymal CTCs, may be used to monitor therapeutic resistance and predict prognosis in patients with metastatic breast cancer. Trial registration ClinicalTrials.gov. NCT01917279. Registered on 19 July 2013, https://clinicaltrials.gov/ct2/show/NCT01917279?term=NCT01917279&rank=1 .
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N159ed6c79a8d46ffa24c2d15099049a8
36 Na46fee52dca444a5922cd772e17f6900
37 sg:journal.1041144
38 schema:name The prognostic and therapeutic implications of circulating tumor cell phenotype detection based on epithelial–mesenchymal transition markers in the first-line chemotherapy of HER2-negative metastatic breast cancer
39 schema:pagination 1
40 schema:productId N0e81be748c7f4cbd86233ea2c81e78ba
41 N165d4426aafa4c5f9ee3b5dd01b8727b
42 N4cbc347dd50d48259ddecb10b00487c9
43 N4ee126a9df1d4cc48c51bfabeb0e3204
44 N906a6aae2c954adfa2a863889ccf93cc
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111097144
46 https://doi.org/10.1186/s40880-018-0346-4
47 schema:sdDatePublished 2019-04-11T12:26
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N70cb608e1e12448294128fd535e6cdb3
50 schema:url https://link.springer.com/10.1186%2Fs40880-018-0346-4
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N070c0210ca6c40aab0d05f65f6256a72 rdf:first sg:person.01221113507.89
55 rdf:rest N64ac31272f8d445b8a3da4805f7f5130
56 N0d2d933ab8ef490a9de6652466a7127c schema:name Department of Medical Oncology, Huanxing Cancer Hospital, 100021, Beijing, P. R. China
57 rdf:type schema:Organization
58 N0e81be748c7f4cbd86233ea2c81e78ba schema:name doi
59 schema:value 10.1186/s40880-018-0346-4
60 rdf:type schema:PropertyValue
61 N159ed6c79a8d46ffa24c2d15099049a8 schema:volumeNumber 39
62 rdf:type schema:PublicationVolume
63 N165d4426aafa4c5f9ee3b5dd01b8727b schema:name pubmed_id
64 schema:value 30606259
65 rdf:type schema:PropertyValue
66 N30a54b981fd949b5810846286f46cfc2 rdf:first sg:person.01234513706.42
67 rdf:rest N5c1a3b004e634d2a91af0d37fb4b6453
68 N344ba5f091584550837bd2b3e6c1b258 rdf:first sg:person.01323035654.64
69 rdf:rest Ncedb0a000495470db64b9feb5bf35c38
70 N4cbc347dd50d48259ddecb10b00487c9 schema:name nlm_unique_id
71 schema:value 101723675
72 rdf:type schema:PropertyValue
73 N4ee126a9df1d4cc48c51bfabeb0e3204 schema:name dimensions_id
74 schema:value pub.1111097144
75 rdf:type schema:PropertyValue
76 N56fedfaf8711479b9ac98b086aa490eb rdf:first sg:person.01256302044.49
77 rdf:rest Nbdcab78b521b4c4b8369e9e8ed4c3e4c
78 N5c1a3b004e634d2a91af0d37fb4b6453 rdf:first sg:person.01345101206.04
79 rdf:rest Nb9a607f5c8044d0eb8e3172eea3eeb3d
80 N64ac31272f8d445b8a3da4805f7f5130 rdf:first sg:person.0675765711.84
81 rdf:rest Nfd793dcbf8c949ea9ee635d7da648dfb
82 N70cb608e1e12448294128fd535e6cdb3 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N7724749a156f497f90fa42f3cd95fd9a schema:name SurExam Bio-Tech, Guangzhou Technology Innovation Base, Science City, 510000, Guangzhou, Guangdong, P. R. China
85 rdf:type schema:Organization
86 N7805640eb5794ecbafd1a44c66668941 rdf:first sg:person.015362264655.62
87 rdf:rest N070c0210ca6c40aab0d05f65f6256a72
88 N906a6aae2c954adfa2a863889ccf93cc schema:name readcube_id
89 schema:value 6ef602549351aa30dcaccaaacffca21cb99490b0b85e55f34fa3a04395f4ff3a
90 rdf:type schema:PropertyValue
91 Na46fee52dca444a5922cd772e17f6900 schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 Na6065ba7847243f4bfc50a0bda8f05a2 rdf:first sg:person.012372155624.77
94 rdf:rest N7805640eb5794ecbafd1a44c66668941
95 Na80bf66e5b6847dc9c11fb636c3c1f5d schema:name SurExam Bio-Tech, Guangzhou Technology Innovation Base, Science City, 510000, Guangzhou, Guangdong, P. R. China
96 rdf:type schema:Organization
97 Nb644b962d54f4aefa16880675593158e rdf:first sg:person.016554470547.46
98 rdf:rest Na6065ba7847243f4bfc50a0bda8f05a2
99 Nb7536c47fba6421890320d4722d04daa rdf:first sg:person.01305143411.18
100 rdf:rest N344ba5f091584550837bd2b3e6c1b258
101 Nb9a607f5c8044d0eb8e3172eea3eeb3d rdf:first sg:person.07430244331.74
102 rdf:rest Nb7536c47fba6421890320d4722d04daa
103 Nbdcab78b521b4c4b8369e9e8ed4c3e4c rdf:first sg:person.01300543255.36
104 rdf:rest Nb644b962d54f4aefa16880675593158e
105 Nbf0b97c06940487990277d86cd45f756 rdf:first sg:person.011001421655.73
106 rdf:rest Nd76cb0bc3e8f48a29e01cf41af30718c
107 Ncedb0a000495470db64b9feb5bf35c38 rdf:first sg:person.01033726014.45
108 rdf:rest rdf:nil
109 Nd76cb0bc3e8f48a29e01cf41af30718c rdf:first sg:person.01354216534.06
110 rdf:rest N56fedfaf8711479b9ac98b086aa490eb
111 Nfd793dcbf8c949ea9ee635d7da648dfb rdf:first sg:person.01353256611.42
112 rdf:rest N30a54b981fd949b5810846286f46cfc2
113 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
114 schema:name Medical and Health Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
117 schema:name Oncology and Carcinogenesis
118 rdf:type schema:DefinedTerm
119 sg:journal.1041144 schema:issn 1000-467X
120 2523-3548
121 schema:name Cancer Communications
122 rdf:type schema:Periodical
123 sg:person.01033726014.45 schema:affiliation https://www.grid.ac/institutes/grid.413106.1
124 schema:familyName Xu
125 schema:givenName Binghe
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033726014.45
127 rdf:type schema:Person
128 sg:person.011001421655.73 schema:affiliation https://www.grid.ac/institutes/grid.413106.1
129 schema:familyName Guan
130 schema:givenName Xiuwen
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011001421655.73
132 rdf:type schema:Person
133 sg:person.01221113507.89 schema:affiliation https://www.grid.ac/institutes/grid.413106.1
134 schema:familyName Wang
135 schema:givenName Jiayu
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221113507.89
137 rdf:type schema:Person
138 sg:person.01234513706.42 schema:affiliation https://www.grid.ac/institutes/grid.413106.1
139 schema:familyName Fan
140 schema:givenName Ying
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234513706.42
142 rdf:type schema:Person
143 sg:person.012372155624.77 schema:affiliation N7724749a156f497f90fa42f3cd95fd9a
144 schema:familyName Huang
145 schema:givenName Jiefen
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012372155624.77
147 rdf:type schema:Person
148 sg:person.01256302044.49 schema:affiliation https://www.grid.ac/institutes/grid.413106.1
149 schema:familyName Li
150 schema:givenName Chunxiao
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256302044.49
152 rdf:type schema:Person
153 sg:person.01300543255.36 schema:affiliation Na80bf66e5b6847dc9c11fb636c3c1f5d
154 schema:familyName Wu
155 schema:givenName Shiyang
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300543255.36
157 rdf:type schema:Person
158 sg:person.01305143411.18 schema:affiliation https://www.grid.ac/institutes/grid.413106.1
159 schema:familyName Zhang
160 schema:givenName Pin
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305143411.18
162 rdf:type schema:Person
163 sg:person.01323035654.64 schema:affiliation https://www.grid.ac/institutes/grid.413106.1
164 schema:familyName Li
165 schema:givenName Qing
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323035654.64
167 rdf:type schema:Person
168 sg:person.01345101206.04 schema:affiliation https://www.grid.ac/institutes/grid.413106.1
169 schema:familyName Li
170 schema:givenName Qiao
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345101206.04
172 rdf:type schema:Person
173 sg:person.01353256611.42 schema:affiliation https://www.grid.ac/institutes/grid.413106.1
174 schema:familyName Cai
175 schema:givenName Ruigang
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353256611.42
177 rdf:type schema:Person
178 sg:person.01354216534.06 schema:affiliation https://www.grid.ac/institutes/grid.413106.1
179 schema:familyName Ma
180 schema:givenName Fei
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354216534.06
182 rdf:type schema:Person
183 sg:person.015362264655.62 schema:affiliation N0d2d933ab8ef490a9de6652466a7127c
184 schema:familyName Sun
185 schema:givenName Xiaoying
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015362264655.62
187 rdf:type schema:Person
188 sg:person.016554470547.46 schema:affiliation https://www.grid.ac/institutes/grid.413106.1
189 schema:familyName Hu
190 schema:givenName Shangying
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016554470547.46
192 rdf:type schema:Person
193 sg:person.0675765711.84 schema:affiliation https://www.grid.ac/institutes/grid.413106.1
194 schema:familyName Luo
195 schema:givenName Yang
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675765711.84
197 rdf:type schema:Person
198 sg:person.07430244331.74 schema:affiliation https://www.grid.ac/institutes/grid.413106.1
199 schema:familyName Chen
200 schema:givenName Shanshan
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07430244331.74
202 rdf:type schema:Person
203 sg:pub.10.1007/s10549-016-4026-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029629867
204 https://doi.org/10.1007/s10549-016-4026-2
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nrc3820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004193947
207 https://doi.org/10.1038/nrc3820
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nrclinonc.2015.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048130166
210 https://doi.org/10.1038/nrclinonc.2015.131
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/s41467-017-00196-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090952531
213 https://doi.org/10.1038/s41467-017-00196-1
214 rdf:type schema:CreativeWork
215 sg:pub.10.1186/s13058-016-0687-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021300961
216 https://doi.org/10.1186/s13058-016-0687-3
217 rdf:type schema:CreativeWork
218 https://app.dimensions.ai/details/publication/pub.1003743887 schema:CreativeWork
219 https://doi.org/10.1002/1878-0261.12017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015505044
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.ctrv.2014.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021663690
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/s1470-2045(14)70069-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052860888
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1056/nejmoa040766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037538258
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/annonc/mdm558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013520815
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/annonc/mdu480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016229185
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/annonc/mdx156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085978913
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/jnci/djn419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019687043
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/jnci/dju066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016858313
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1126/science.1228522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013110936
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1158/1078-0432.ccr-05-2821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009907076
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1158/1078-0432.ccr-12-3137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026813541
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1158/1078-0432.ccr-14-0894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032528374
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1200/jco.2014.56.2561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007317943
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1371/journal.pone.0123976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026615613
248 rdf:type schema:CreativeWork
249 https://doi.org/10.15252/emmm.201404208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050600359
250 rdf:type schema:CreativeWork
251 https://doi.org/10.18632/oncotarget.11787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005102182
252 rdf:type schema:CreativeWork
253 https://doi.org/10.3389/fonc.2015.00042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052399824
254 rdf:type schema:CreativeWork
255 https://doi.org/10.3892/or.2013.2294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071532286
256 rdf:type schema:CreativeWork
257 https://www.grid.ac/institutes/grid.413106.1 schema:alternateName Peking Union Medical College Hospital
258 schema:name Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
259 Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, 100021, Beijing, P. R. China
260 State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...