A multilevel pan-cancer map links gene mutations to cancer hallmarks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09-14

AUTHORS

Theo A. Knijnenburg, Tycho Bismeijer, Lodewyk F. A. Wessels, Ilya Shmulevich

ABSTRACT

BACKGROUND: A central challenge in cancer research is to create models that bridge the gap between the molecular level on which interventions can be designed and the cellular and tissue levels on which the disease phenotypes are manifested. This study was undertaken to construct such a model from functional annotations and explore its use when integrated with large-scale cancer genomics data. METHODS: We created a map that connects genes to cancer hallmarks via signaling pathways. We projected gene mutation and focal copy number data from various cancer types onto this map. We performed statistical analyses to uncover mutually exclusive and co-occurring oncogenic aberrations within this topology. RESULTS: Our analysis showed that although the genetic fingerprint of tumor types could be very different, there were less variations at the level of hallmarks, consistent with the idea that different genetic alterations have similar functional outcomes. Additionally, we showed how the multilevel map could help to clarify the role of infrequently mutated genes, and we demonstrated that mutually exclusive gene mutations were more prevalent in pathways, whereas many co-occurring gene mutations were associated with hallmark characteristics. CONCLUSIONS: Overlaying this map with gene mutation and focal copy number data from various cancer types makes it possible to investigate the similarities and differences between tumor samples systematically at the levels of not only genes but also pathways and hallmarks. More... »

PAGES

48

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40880-015-0050-6

DOI

http://dx.doi.org/10.1186/s40880-015-0050-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029834075

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26369414


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplastic Processes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Systems Biology, Seattle, WA 98109 USA", 
          "id": "http://www.grid.ac/institutes/grid.64212.33", 
          "name": [
            "Institute for Systems Biology, Seattle, WA 98109 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knijnenburg", 
        "givenName": "Theo A.", 
        "id": "sg:person.01155113560.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155113560.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics and Statistics, Division of Molecular Carcinogenesis, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.430814.a", 
          "name": [
            "Bioinformatics and Statistics, Division of Molecular Carcinogenesis, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bismeijer", 
        "givenName": "Tycho", 
        "id": "sg:person.01125151323.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125151323.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics and Statistics, Division of Molecular Carcinogenesis, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.430814.a", 
          "name": [
            "Bioinformatics and Statistics, Division of Molecular Carcinogenesis, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wessels", 
        "givenName": "Lodewyk F. A.", 
        "id": "sg:person.013377553177.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377553177.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Systems Biology, Seattle, WA 98109 USA", 
          "id": "http://www.grid.ac/institutes/grid.64212.33", 
          "name": [
            "Institute for Systems Biology, Seattle, WA 98109 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shmulevich", 
        "givenName": "Ilya", 
        "id": "sg:person.01354314446.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354314446.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043830331", 
          "https://doi.org/10.1038/nature06915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:fame.0000026816.32400.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005355352", 
          "https://doi.org/10.1023/b:fame.0000026816.32400.45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001086254", 
          "https://doi.org/10.1186/1471-2105-12-411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033967678", 
          "https://doi.org/10.1038/ng.2764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001644479", 
          "https://doi.org/10.1038/nature12634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052675624", 
          "https://doi.org/10.1038/ng.3168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-7-s1-s1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078817705", 
          "https://doi.org/10.1186/1752-0509-7-s1-s1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrclinonc.2010.227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025739365", 
          "https://doi.org/10.1038/nrclinonc.2010.227"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09-14", 
    "datePublishedReg": "2015-09-14", 
    "description": "BACKGROUND: A central challenge in cancer research is to create models that bridge the gap between the molecular level on which interventions can be designed and the cellular and tissue levels on which the disease phenotypes are manifested. This study was undertaken to construct such a model from functional annotations and explore its use when integrated with large-scale cancer genomics data.\nMETHODS: We created a map that connects genes to cancer hallmarks via signaling pathways. We projected gene mutation and focal copy number data from various cancer types onto this map. We performed statistical analyses to uncover mutually exclusive and co-occurring oncogenic aberrations within this topology.\nRESULTS: Our analysis showed that although the genetic fingerprint of tumor types could be very different, there were less variations at the level of hallmarks, consistent with the idea that different genetic alterations have similar functional outcomes. Additionally, we showed how the multilevel map could help to clarify the role of infrequently mutated genes, and we demonstrated that mutually exclusive gene mutations were more prevalent in pathways, whereas many co-occurring gene mutations were associated with hallmark characteristics.\nCONCLUSIONS: Overlaying this map with gene mutation and focal copy number data from various cancer types makes it possible to investigate the similarities and differences between tumor samples systematically at the levels of not only genes but also pathways and hallmarks.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40880-015-0050-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2696331", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1371308", 
        "issn": [
          "1000-467X", 
          "2523-3548"
        ], 
        "name": "Cancer Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "keywords": [
      "copy number data", 
      "cancer hallmarks", 
      "large-scale cancer genomics data", 
      "cancer genomic data", 
      "gene mutations", 
      "functional annotation", 
      "genomic data", 
      "different genetic alterations", 
      "only gene", 
      "cancer types", 
      "genetic fingerprints", 
      "molecular level", 
      "oncogenic aberrations", 
      "genes", 
      "number data", 
      "disease phenotype", 
      "genetic alterations", 
      "mutations", 
      "pathway", 
      "hallmark", 
      "cancer research", 
      "tumor samples", 
      "hallmark characteristics", 
      "less variation", 
      "central challenge", 
      "tumor types", 
      "phenotype", 
      "multilevel maps", 
      "annotation", 
      "tissue levels", 
      "levels", 
      "similarity", 
      "aberrations", 
      "alterations", 
      "maps", 
      "role", 
      "types", 
      "analysis", 
      "variation", 
      "fingerprints", 
      "data", 
      "study", 
      "differences", 
      "topology", 
      "statistical analysis", 
      "model", 
      "samples", 
      "similar functional outcomes", 
      "characteristics", 
      "challenges", 
      "use", 
      "research", 
      "gap", 
      "idea", 
      "outcomes", 
      "intervention", 
      "functional outcome", 
      "focal copy number data", 
      "co-occurring oncogenic aberrations", 
      "level of hallmarks", 
      "exclusive gene mutations", 
      "co-occurring gene mutations", 
      "multilevel pan-cancer map", 
      "pan-cancer map"
    ], 
    "name": "A multilevel pan-cancer map links gene mutations to cancer hallmarks", 
    "pagination": "48", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029834075"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40880-015-0050-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26369414"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40880-015-0050-6", 
      "https://app.dimensions.ai/details/publication/pub.1029834075"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_652.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40880-015-0050-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40880-015-0050-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40880-015-0050-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40880-015-0050-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40880-015-0050-6'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      22 PREDICATES      105 URIs      88 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40880-015-0050-6 schema:about N34a807382e254c4788372a6e749c8d42
2 N6bcdeda4bded44a1b13ae857bdcf213d
3 Nbf42e53f09f64887950cbae28714e828
4 Nc23cd3188b454695bff0da516e84b15c
5 Nc5883501fd62497c9b3854b9e911992e
6 Nf4fe1f4e16294a5da0262fc604ff0b2b
7 anzsrc-for:11
8 anzsrc-for:1112
9 schema:author N14f84c3a5b2448c7b67ab9b02ce201b6
10 schema:citation sg:pub.10.1023/b:fame.0000026816.32400.45
11 sg:pub.10.1038/75556
12 sg:pub.10.1038/nature06915
13 sg:pub.10.1038/nature12634
14 sg:pub.10.1038/ng.2764
15 sg:pub.10.1038/ng.3168
16 sg:pub.10.1038/nrclinonc.2010.227
17 sg:pub.10.1186/1471-2105-12-411
18 sg:pub.10.1186/1752-0509-7-s1-s1
19 schema:datePublished 2015-09-14
20 schema:datePublishedReg 2015-09-14
21 schema:description BACKGROUND: A central challenge in cancer research is to create models that bridge the gap between the molecular level on which interventions can be designed and the cellular and tissue levels on which the disease phenotypes are manifested. This study was undertaken to construct such a model from functional annotations and explore its use when integrated with large-scale cancer genomics data. METHODS: We created a map that connects genes to cancer hallmarks via signaling pathways. We projected gene mutation and focal copy number data from various cancer types onto this map. We performed statistical analyses to uncover mutually exclusive and co-occurring oncogenic aberrations within this topology. RESULTS: Our analysis showed that although the genetic fingerprint of tumor types could be very different, there were less variations at the level of hallmarks, consistent with the idea that different genetic alterations have similar functional outcomes. Additionally, we showed how the multilevel map could help to clarify the role of infrequently mutated genes, and we demonstrated that mutually exclusive gene mutations were more prevalent in pathways, whereas many co-occurring gene mutations were associated with hallmark characteristics. CONCLUSIONS: Overlaying this map with gene mutation and focal copy number data from various cancer types makes it possible to investigate the similarities and differences between tumor samples systematically at the levels of not only genes but also pathways and hallmarks.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N4c6704aa04404f49beacf49162cfe353
26 Nce24a048ec3f49c5b43675fd8001f3b3
27 sg:journal.1371308
28 schema:keywords aberrations
29 alterations
30 analysis
31 annotation
32 cancer genomic data
33 cancer hallmarks
34 cancer research
35 cancer types
36 central challenge
37 challenges
38 characteristics
39 co-occurring gene mutations
40 co-occurring oncogenic aberrations
41 copy number data
42 data
43 differences
44 different genetic alterations
45 disease phenotype
46 exclusive gene mutations
47 fingerprints
48 focal copy number data
49 functional annotation
50 functional outcome
51 gap
52 gene mutations
53 genes
54 genetic alterations
55 genetic fingerprints
56 genomic data
57 hallmark
58 hallmark characteristics
59 idea
60 intervention
61 large-scale cancer genomics data
62 less variation
63 level of hallmarks
64 levels
65 maps
66 model
67 molecular level
68 multilevel maps
69 multilevel pan-cancer map
70 mutations
71 number data
72 oncogenic aberrations
73 only gene
74 outcomes
75 pan-cancer map
76 pathway
77 phenotype
78 research
79 role
80 samples
81 similar functional outcomes
82 similarity
83 statistical analysis
84 study
85 tissue levels
86 topology
87 tumor samples
88 tumor types
89 types
90 use
91 variation
92 schema:name A multilevel pan-cancer map links gene mutations to cancer hallmarks
93 schema:pagination 48
94 schema:productId N217b3398a3a244e8b093997e93213c9d
95 N445cc0e03c674d85938803829d019c38
96 Ne5a087691fea410bbce697380b6dfe0f
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029834075
98 https://doi.org/10.1186/s40880-015-0050-6
99 schema:sdDatePublished 2022-01-01T18:35
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N1d88aa16ab994a92a79c3a05de150805
102 schema:url https://doi.org/10.1186/s40880-015-0050-6
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N14f84c3a5b2448c7b67ab9b02ce201b6 rdf:first sg:person.01155113560.54
107 rdf:rest Nf9d4fd5058ac486dbe0d312ae11102f2
108 N1d88aa16ab994a92a79c3a05de150805 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N217b3398a3a244e8b093997e93213c9d schema:name pubmed_id
111 schema:value 26369414
112 rdf:type schema:PropertyValue
113 N34a807382e254c4788372a6e749c8d42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Signal Transduction
115 rdf:type schema:DefinedTerm
116 N3729a5df0b9848a1996a026ea641997a rdf:first sg:person.01354314446.15
117 rdf:rest rdf:nil
118 N445cc0e03c674d85938803829d019c38 schema:name dimensions_id
119 schema:value pub.1029834075
120 rdf:type schema:PropertyValue
121 N4b5b6c1f009a43f7aaff03a0e6c8aa55 rdf:first sg:person.013377553177.45
122 rdf:rest N3729a5df0b9848a1996a026ea641997a
123 N4c6704aa04404f49beacf49162cfe353 schema:issueNumber 10
124 rdf:type schema:PublicationIssue
125 N6bcdeda4bded44a1b13ae857bdcf213d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Mutation
127 rdf:type schema:DefinedTerm
128 Nbf42e53f09f64887950cbae28714e828 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Humans
130 rdf:type schema:DefinedTerm
131 Nc23cd3188b454695bff0da516e84b15c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Genomics
133 rdf:type schema:DefinedTerm
134 Nc5883501fd62497c9b3854b9e911992e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Neoplasms
136 rdf:type schema:DefinedTerm
137 Nce24a048ec3f49c5b43675fd8001f3b3 schema:volumeNumber 34
138 rdf:type schema:PublicationVolume
139 Ne5a087691fea410bbce697380b6dfe0f schema:name doi
140 schema:value 10.1186/s40880-015-0050-6
141 rdf:type schema:PropertyValue
142 Nf4fe1f4e16294a5da0262fc604ff0b2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Neoplastic Processes
144 rdf:type schema:DefinedTerm
145 Nf9d4fd5058ac486dbe0d312ae11102f2 rdf:first sg:person.01125151323.29
146 rdf:rest N4b5b6c1f009a43f7aaff03a0e6c8aa55
147 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
148 schema:name Medical and Health Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
151 schema:name Oncology and Carcinogenesis
152 rdf:type schema:DefinedTerm
153 sg:grant.2696331 http://pending.schema.org/fundedItem sg:pub.10.1186/s40880-015-0050-6
154 rdf:type schema:MonetaryGrant
155 sg:journal.1371308 schema:issn 1000-467X
156 2523-3548
157 schema:name Cancer Communications
158 schema:publisher Springer Nature
159 rdf:type schema:Periodical
160 sg:person.01125151323.29 schema:affiliation grid-institutes:grid.430814.a
161 schema:familyName Bismeijer
162 schema:givenName Tycho
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125151323.29
164 rdf:type schema:Person
165 sg:person.01155113560.54 schema:affiliation grid-institutes:grid.64212.33
166 schema:familyName Knijnenburg
167 schema:givenName Theo A.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155113560.54
169 rdf:type schema:Person
170 sg:person.013377553177.45 schema:affiliation grid-institutes:grid.430814.a
171 schema:familyName Wessels
172 schema:givenName Lodewyk F. A.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377553177.45
174 rdf:type schema:Person
175 sg:person.01354314446.15 schema:affiliation grid-institutes:grid.64212.33
176 schema:familyName Shmulevich
177 schema:givenName Ilya
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354314446.15
179 rdf:type schema:Person
180 sg:pub.10.1023/b:fame.0000026816.32400.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005355352
181 https://doi.org/10.1023/b:fame.0000026816.32400.45
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
184 https://doi.org/10.1038/75556
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nature06915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043830331
187 https://doi.org/10.1038/nature06915
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nature12634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001644479
190 https://doi.org/10.1038/nature12634
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/ng.2764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033967678
193 https://doi.org/10.1038/ng.2764
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/ng.3168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052675624
196 https://doi.org/10.1038/ng.3168
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/nrclinonc.2010.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025739365
199 https://doi.org/10.1038/nrclinonc.2010.227
200 rdf:type schema:CreativeWork
201 sg:pub.10.1186/1471-2105-12-411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001086254
202 https://doi.org/10.1186/1471-2105-12-411
203 rdf:type schema:CreativeWork
204 sg:pub.10.1186/1752-0509-7-s1-s1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078817705
205 https://doi.org/10.1186/1752-0509-7-s1-s1
206 rdf:type schema:CreativeWork
207 grid-institutes:grid.430814.a schema:alternateName Bioinformatics and Statistics, Division of Molecular Carcinogenesis, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
208 schema:name Bioinformatics and Statistics, Division of Molecular Carcinogenesis, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
209 rdf:type schema:Organization
210 grid-institutes:grid.64212.33 schema:alternateName Institute for Systems Biology, Seattle, WA 98109 USA
211 schema:name Institute for Systems Biology, Seattle, WA 98109 USA
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...