Evaluation of the robusticity of mutual fund performance in Ghana using Enhanced Resilient Backpropagation Neural Network (ERBPNN) and Fast Adaptive ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Yushen Kong, Micheal Owusu-Akomeah, Henry Asante Antwi, Xuhua Hu, Patrick Acheampong

ABSTRACT

Mutual fund investment continues to play a very important role in the world financial markets especially in developing economies where the capital market is not very matured and tolerant of small scale investors. The total mutual fund asset globally as at the end of 2016 was in excess of $40.4 trillion. Despite its success there are uncertainties as to whether mutual funds in Ghana obtain optimal performance relative to their counterparts in United States, Luxembourg, Ireland, France, Australia, United Kingdom, Japan, China and Brazil. We contribute to the extant literature on mutual fund performance evaluation using a collection of more sophisticated econometric models. We selected six continuous historical years that is 2010–2011, 2012–2013 and 2014–2015 to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier (FANNC), and to compare our results with those from an enhanced resilient back propagation neural networks (ERBPNN) model. Our FANNC model outperformed the existing models in terms of processing time and error rate. This makes it ideal for financial application that involves large volume of data and routine updates. More... »

PAGES

10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40854-019-0125-5

DOI

http://dx.doi.org/10.1186/s40854-019-0125-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112315706


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Banking, Finance and Investment", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Commerce, Management, Tourism and Services", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jiangsu University", 
          "id": "https://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "School of Finance and Economics, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kong", 
        "givenName": "Yushen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu University", 
          "id": "https://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "School of Finance and Economics, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Owusu-Akomeah", 
        "givenName": "Micheal", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu University", 
          "id": "https://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "School of Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antwi", 
        "givenName": "Henry Asante", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu University", 
          "id": "https://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "School of Finance and Economics, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Xuhua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu University", 
          "id": "https://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "School of Finance and Economics, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Acheampong", 
        "givenName": "Patrick", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10551-015-2850-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026900662", 
          "https://doi.org/10.1007/s10551-015-2850-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10551-015-2850-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026900662", 
          "https://doi.org/10.1007/s10551-015-2850-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-016-2294-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033868187", 
          "https://doi.org/10.1007/s10479-016-2294-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-016-2294-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033868187", 
          "https://doi.org/10.1007/s10479-016-2294-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-405x(92)90023-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036287994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2016.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039772515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207543.2016.1237785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043350495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbankfin.2016.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046212444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2015.2461136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061333888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/ijrcm.2017040102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083753733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.02.097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086061166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2017.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091066182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15427560.2017.1373282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092262697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-69096-4_104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092459054", 
          "https://doi.org/10.1007/978-3-319-69096-4_104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jedc.2017.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092801888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1092904553", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-69725-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092904553", 
          "https://doi.org/10.1007/978-3-319-69725-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icbda.2017.8078807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094199247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10586-017-1685-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100861262", 
          "https://doi.org/10.1007/s10586-017-1685-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jksuci.2018.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103655721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icomet.2018.8346352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103664561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/978-1-5225-5643-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103941202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09720529.2018.1480277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105484653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3219819.3220113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105723763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3219819.3220113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105723763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cogsys.2018.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105852607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cogsys.2018.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105852607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icaecc.2018.8479456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107416377"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Mutual fund investment continues to play a very important role in the world financial markets especially in developing economies where the capital market is not very matured and tolerant of small scale investors. The total mutual fund asset globally as at the end of 2016 was in excess of $40.4 trillion. Despite its success there are uncertainties as to whether mutual funds in Ghana obtain optimal performance relative to their counterparts in United States, Luxembourg, Ireland, France, Australia, United Kingdom, Japan, China and Brazil. We contribute to the extant literature on mutual fund performance evaluation using a collection of more sophisticated econometric models. We selected six continuous historical years that is 2010\u20132011, 2012\u20132013 and 2014\u20132015 to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier (FANNC), and to compare our results with those from an enhanced resilient back propagation neural networks (ERBPNN) model. Our FANNC model outperformed the existing models in terms of processing time and error rate. This makes it ideal for financial application that involves large volume of data and routine updates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40854-019-0125-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136870", 
        "issn": [
          "2199-4730"
        ], 
        "name": "Financial Innovation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Evaluation of the robusticity of mutual fund performance in Ghana using Enhanced Resilient Backpropagation Neural Network (ERBPNN) and Fast Adaptive Neural Network Classifier (FANNC)", 
    "pagination": "10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "177a7bd847ce638fc14b6050ecebef4af3f9e385f60a8ca6a1c6d0346080d21c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40854-019-0125-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112315706"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40854-019-0125-5", 
      "https://app.dimensions.ai/details/publication/pub.1112315706"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99806_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40854-019-0125-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40854-019-0125-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40854-019-0125-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40854-019-0125-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40854-019-0125-5'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40854-019-0125-5 schema:about anzsrc-for:15
2 anzsrc-for:1502
3 schema:author N27a08c68c724473ea25d23f4c3e6f91a
4 schema:citation sg:pub.10.1007/978-3-319-69096-4_104
5 sg:pub.10.1007/978-3-319-69725-3
6 sg:pub.10.1007/s10479-016-2294-1
7 sg:pub.10.1007/s10551-015-2850-7
8 sg:pub.10.1007/s10586-017-1685-7
9 https://app.dimensions.ai/details/publication/pub.1092904553
10 https://doi.org/10.1016/0304-405x(92)90023-q
11 https://doi.org/10.1016/j.cogsys.2018.07.006
12 https://doi.org/10.1016/j.ejor.2016.10.031
13 https://doi.org/10.1016/j.jbankfin.2016.10.009
14 https://doi.org/10.1016/j.jedc.2017.11.002
15 https://doi.org/10.1016/j.jksuci.2018.04.011
16 https://doi.org/10.1016/j.neucom.2017.02.097
17 https://doi.org/10.1016/j.physa.2017.07.017
18 https://doi.org/10.1080/00207543.2016.1237785
19 https://doi.org/10.1080/09720529.2018.1480277
20 https://doi.org/10.1080/15427560.2017.1373282
21 https://doi.org/10.1109/icaecc.2018.8479456
22 https://doi.org/10.1109/icbda.2017.8078807
23 https://doi.org/10.1109/icomet.2018.8346352
24 https://doi.org/10.1109/jstars.2015.2461136
25 https://doi.org/10.1145/3219819.3220113
26 https://doi.org/10.4018/978-1-5225-5643-5
27 https://doi.org/10.4018/ijrcm.2017040102
28 schema:datePublished 2019-12
29 schema:datePublishedReg 2019-12-01
30 schema:description Mutual fund investment continues to play a very important role in the world financial markets especially in developing economies where the capital market is not very matured and tolerant of small scale investors. The total mutual fund asset globally as at the end of 2016 was in excess of $40.4 trillion. Despite its success there are uncertainties as to whether mutual funds in Ghana obtain optimal performance relative to their counterparts in United States, Luxembourg, Ireland, France, Australia, United Kingdom, Japan, China and Brazil. We contribute to the extant literature on mutual fund performance evaluation using a collection of more sophisticated econometric models. We selected six continuous historical years that is 2010–2011, 2012–2013 and 2014–2015 to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier (FANNC), and to compare our results with those from an enhanced resilient back propagation neural networks (ERBPNN) model. Our FANNC model outperformed the existing models in terms of processing time and error rate. This makes it ideal for financial application that involves large volume of data and routine updates.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf Nd05d5f8683374785b31a0c04a2d7a9db
35 Ne2091629f5e940ee942180c8352b063e
36 sg:journal.1136870
37 schema:name Evaluation of the robusticity of mutual fund performance in Ghana using Enhanced Resilient Backpropagation Neural Network (ERBPNN) and Fast Adaptive Neural Network Classifier (FANNC)
38 schema:pagination 10
39 schema:productId N7fa1045c04174010a6144865b918feb8
40 N817392dbb9d7439e950677487bf9507d
41 Nf6c0a5f391bf4e9b8cca8d4e874289de
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112315706
43 https://doi.org/10.1186/s40854-019-0125-5
44 schema:sdDatePublished 2019-04-11T09:32
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N33916598e3cc468eb396f6648532d0a4
47 schema:url https://link.springer.com/10.1186%2Fs40854-019-0125-5
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N21551202865940a8b3d172fab42ad0b2 schema:affiliation https://www.grid.ac/institutes/grid.440785.a
52 schema:familyName Antwi
53 schema:givenName Henry Asante
54 rdf:type schema:Person
55 N27a08c68c724473ea25d23f4c3e6f91a rdf:first N7d7937a7b25a42dcaed3a23829839306
56 rdf:rest N47aa930447ec4a608667c69139a9a752
57 N2ccd9b0619504c4983da148ba7d7871a rdf:first N49ab69b4c84d4b2fa604d8261f9c0edb
58 rdf:rest N68c7e98351584701a73cc66e5d420045
59 N33916598e3cc468eb396f6648532d0a4 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N412e8e6d6c5647129ae3ed4a44740f1b schema:affiliation https://www.grid.ac/institutes/grid.440785.a
62 schema:familyName Acheampong
63 schema:givenName Patrick
64 rdf:type schema:Person
65 N47aa930447ec4a608667c69139a9a752 rdf:first N57b84dbe4b774573aca1fa0c2cdcabfc
66 rdf:rest Nd6006e721b22420e83ed6fdf1c79c7fd
67 N49ab69b4c84d4b2fa604d8261f9c0edb schema:affiliation https://www.grid.ac/institutes/grid.440785.a
68 schema:familyName Hu
69 schema:givenName Xuhua
70 rdf:type schema:Person
71 N57b84dbe4b774573aca1fa0c2cdcabfc schema:affiliation https://www.grid.ac/institutes/grid.440785.a
72 schema:familyName Owusu-Akomeah
73 schema:givenName Micheal
74 rdf:type schema:Person
75 N68c7e98351584701a73cc66e5d420045 rdf:first N412e8e6d6c5647129ae3ed4a44740f1b
76 rdf:rest rdf:nil
77 N7d7937a7b25a42dcaed3a23829839306 schema:affiliation https://www.grid.ac/institutes/grid.440785.a
78 schema:familyName Kong
79 schema:givenName Yushen
80 rdf:type schema:Person
81 N7fa1045c04174010a6144865b918feb8 schema:name doi
82 schema:value 10.1186/s40854-019-0125-5
83 rdf:type schema:PropertyValue
84 N817392dbb9d7439e950677487bf9507d schema:name readcube_id
85 schema:value 177a7bd847ce638fc14b6050ecebef4af3f9e385f60a8ca6a1c6d0346080d21c
86 rdf:type schema:PropertyValue
87 Nd05d5f8683374785b31a0c04a2d7a9db schema:volumeNumber 5
88 rdf:type schema:PublicationVolume
89 Nd6006e721b22420e83ed6fdf1c79c7fd rdf:first N21551202865940a8b3d172fab42ad0b2
90 rdf:rest N2ccd9b0619504c4983da148ba7d7871a
91 Ne2091629f5e940ee942180c8352b063e schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 Nf6c0a5f391bf4e9b8cca8d4e874289de schema:name dimensions_id
94 schema:value pub.1112315706
95 rdf:type schema:PropertyValue
96 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
97 schema:name Commerce, Management, Tourism and Services
98 rdf:type schema:DefinedTerm
99 anzsrc-for:1502 schema:inDefinedTermSet anzsrc-for:
100 schema:name Banking, Finance and Investment
101 rdf:type schema:DefinedTerm
102 sg:journal.1136870 schema:issn 2199-4730
103 schema:name Financial Innovation
104 rdf:type schema:Periodical
105 sg:pub.10.1007/978-3-319-69096-4_104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092459054
106 https://doi.org/10.1007/978-3-319-69096-4_104
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/978-3-319-69725-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092904553
109 https://doi.org/10.1007/978-3-319-69725-3
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10479-016-2294-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033868187
112 https://doi.org/10.1007/s10479-016-2294-1
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10551-015-2850-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026900662
115 https://doi.org/10.1007/s10551-015-2850-7
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s10586-017-1685-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100861262
118 https://doi.org/10.1007/s10586-017-1685-7
119 rdf:type schema:CreativeWork
120 https://app.dimensions.ai/details/publication/pub.1092904553 schema:CreativeWork
121 https://doi.org/10.1016/0304-405x(92)90023-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1036287994
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.cogsys.2018.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105852607
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ejor.2016.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039772515
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jbankfin.2016.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046212444
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jedc.2017.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092801888
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jksuci.2018.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103655721
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.neucom.2017.02.097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086061166
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.physa.2017.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091066182
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/00207543.2016.1237785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043350495
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/09720529.2018.1480277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105484653
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/15427560.2017.1373282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092262697
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/icaecc.2018.8479456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107416377
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/icbda.2017.8078807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094199247
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/icomet.2018.8346352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103664561
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/jstars.2015.2461136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061333888
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1145/3219819.3220113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105723763
152 rdf:type schema:CreativeWork
153 https://doi.org/10.4018/978-1-5225-5643-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103941202
154 rdf:type schema:CreativeWork
155 https://doi.org/10.4018/ijrcm.2017040102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083753733
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.440785.a schema:alternateName Jiangsu University
158 schema:name School of Finance and Economics, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People’s Republic of China
159 School of Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People’s Republic of China
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...