Complete genome sequence of Thermus brockianus GE-1 reveals key enzymes of xylan/xylose metabolism View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02-03

AUTHORS

Christian Schäfers, Saskia Blank, Sigrid Wiebusch, Skander Elleuche, Garabed Antranikian

ABSTRACT

Thermus brockianus strain GE-1 is a thermophilic, Gram-negative, rod-shaped and non-motile bacterium that was isolated from the Geysir geothermal area, Iceland. Like other thermophiles, Thermus species are often used as model organisms to understand the mechanism of action of extremozymes, especially focusing on their heat-activity and thermostability. Genome-specific features of T. brockianus GE-1 and their properties further help to explain processes of the adaption of extremophiles at elevated temperatures. Here we analyze the first whole genome sequence of T. brockianus strain GE-1. Insights of the genome sequence and the methodologies that were applied during de novo assembly and annotation are given in detail. The finished genome shows a phred quality value of QV50. The complete genome size is 2.38 Mb, comprising the chromosome (2,035,182 bp), the megaplasmid pTB1 (342,792 bp) and the smaller plasmid pTB2 (10,299 bp). Gene prediction revealed 2,511 genes in total, including 2,458 protein-encoding genes, 53 RNA and 66 pseudo genes. A unique genomic region on megaplasmid pTB1 was identified encoding key enzymes for xylan depolymerization and xylose metabolism. This is in agreement with the growth experiments in which xylan is utilized as sole source of carbon. Accordingly, we identified sequences encoding the xylanase Xyn10, an endoglucanase, the membrane ABC sugar transporter XylH, the xylose-binding protein XylF, the xylose isomerase XylA catalyzing the first step of xylose metabolism and the xylulokinase XylB, responsible for the second step of xylose metabolism. Our data indicate that an ancestor of T. brockianus obtained the ability to use xylose as alternative carbon source by horizontal gene transfer. More... »

PAGES

22

References to SciGraph publications

  • 2000-05. Gene Ontology: tool for the unification of biology in NATURE GENETICS
  • 2015-12-29. Circlator: automated circularization of genome assemblies using long sequencing reads in GENOME BIOLOGY
  • 2013-05-05. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data in NATURE METHODS
  • 2007-06-18. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats in BMC BIOINFORMATICS
  • 1997-04. Extremophiles. in SCIENTIFIC AMERICAN
  • 2006. The Genus Thermus and Relatives in THE PROKARYOTES
  • 2015-03-12. Genomic Analysis of Xylose Metabolism in Members of the Deinoccocus-Thermus Phylum from Thermophilic Biomass-Deconstructing Bacterial Consortia in BIOENERGY RESEARCH
  • 2011-09-29. SignalP 4.0: discriminating signal peptides from transmembrane regions in NATURE METHODS
  • 2010-03-08. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • 2015-10-08. Complete genome sequence of the thermophilic Thermus sp. CCB_US3_UF1 from a hot spring in Malaysia in ENVIRONMENTAL MICROBIOME
  • 2001-02. Thermozymes and their applications in APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
  • 2012-01-03. The third plasmid pVV8 from Thermus thermophilus HB8: isolation, characterization, and sequence determination in EXTREMOPHILES
  • 2011-11-24. Sequence of the hyperplastic genome of the naturally competent Thermus scotoductus SA-01 in BMC GENOMICS
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2009-01-21. Thermus thermophilus as biological model in EXTREMOPHILES
  • 2001. Phylum BIV. “Deinococcus-Thermus” in BERGEY’S MANUAL® OF SYSTEMATIC BACTERIOLOGY
  • 2004-04-04. The genome sequence of the extreme thermophile Thermus thermophilus in NATURE BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40793-017-0225-7

    DOI

    http://dx.doi.org/10.1186/s40793-017-0225-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083538399

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28174620


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstra\u00dfe 12, 21073, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6884.2", 
              "name": [
                "Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstra\u00dfe 12, 21073, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sch\u00e4fers", 
            "givenName": "Christian", 
            "id": "sg:person.01052172175.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052172175.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstra\u00dfe 12, 21073, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6884.2", 
              "name": [
                "Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstra\u00dfe 12, 21073, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blank", 
            "givenName": "Saskia", 
            "id": "sg:person.01164173776.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164173776.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstra\u00dfe 12, 21073, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6884.2", 
              "name": [
                "Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstra\u00dfe 12, 21073, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wiebusch", 
            "givenName": "Sigrid", 
            "id": "sg:person.01253256126.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253256126.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstra\u00dfe 12, 21073, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6884.2", 
              "name": [
                "Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstra\u00dfe 12, 21073, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Elleuche", 
            "givenName": "Skander", 
            "id": "sg:person.01271304705.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271304705.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstra\u00dfe 12, 21073, Hamburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6884.2", 
              "name": [
                "Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstra\u00dfe 12, 21073, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Antranikian", 
            "givenName": "Garabed", 
            "id": "sg:person.01170037002.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170037002.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00792-011-0424-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040215440", 
              "https://doi.org/10.1007/s00792-011-0424-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021991437", 
              "https://doi.org/10.1038/nbt956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1385/abab:90:2:155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008608790", 
              "https://doi.org/10.1385/abab:90:2:155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0849-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048601364", 
              "https://doi.org/10.1186/s13059-015-0849-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038439506", 
              "https://doi.org/10.1038/nbt1360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican0497-82", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056527507", 
              "https://doi.org/10.1038/scientificamerican0497-82"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020623557", 
              "https://doi.org/10.1186/1471-2105-8-209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049894869", 
              "https://doi.org/10.1038/nmeth.1701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-387-30747-8_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017959274", 
              "https://doi.org/10.1007/0-387-30747-8_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12155-015-9600-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046736373", 
              "https://doi.org/10.1007/s12155-015-9600-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037131910", 
              "https://doi.org/10.1186/1471-2164-12-577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00792-009-0226-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012155477", 
              "https://doi.org/10.1007/s00792-009-0226-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40793-015-0053-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032138799", 
              "https://doi.org/10.1186/s40793-015-0053-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002897135", 
              "https://doi.org/10.1038/nmeth.2474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-21609-6_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041280961", 
              "https://doi.org/10.1007/978-0-387-21609-6_21"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02-03", 
        "datePublishedReg": "2017-02-03", 
        "description": "Thermus brockianus strain GE-1 is a thermophilic, Gram-negative, rod-shaped and non-motile bacterium that was isolated from the Geysir geothermal area, Iceland. Like other thermophiles, Thermus species are often used as model organisms to understand the mechanism of action of extremozymes, especially focusing on their heat-activity and thermostability. Genome-specific features of T. brockianus GE-1 and their properties further help to explain processes of the adaption of extremophiles at elevated temperatures. Here we analyze the first whole genome sequence of T. brockianus strain GE-1. Insights of the genome sequence and the methodologies that were applied during de novo assembly and annotation are given in detail. The finished genome shows a phred quality value of QV50. The complete genome size is 2.38\u00a0Mb, comprising the chromosome (2,035,182\u00a0bp), the megaplasmid pTB1 (342,792\u00a0bp) and the smaller plasmid pTB2 (10,299\u00a0bp). Gene prediction revealed 2,511 genes in total, including 2,458 protein-encoding genes, 53 RNA and 66 pseudo genes. A unique genomic region on megaplasmid pTB1 was identified encoding key enzymes for xylan depolymerization and xylose metabolism. This is in agreement with the growth experiments in which xylan is utilized as sole source of carbon. Accordingly, we identified sequences encoding the xylanase Xyn10, an endoglucanase, the membrane ABC sugar transporter XylH, the xylose-binding protein XylF, the xylose isomerase XylA catalyzing the first step of xylose metabolism and the xylulokinase XylB, responsible for the second step of xylose metabolism. Our data indicate that an ancestor of T. brockianus obtained the ability to use xylose as alternative carbon source by horizontal gene transfer.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40793-017-0225-7", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1357741", 
            "issn": [
              "2524-6372"
            ], 
            "name": "Environmental Microbiome", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "genome sequence", 
          "xylose metabolism", 
          "key enzyme", 
          "protein-encoding genes", 
          "complete genome size", 
          "unique genomic regions", 
          "genome-specific features", 
          "first whole-genome sequence", 
          "non-motile bacterium", 
          "horizontal gene transfer", 
          "de novo assembly", 
          "complete genome sequence", 
          "whole genome sequences", 
          "Ge 1", 
          "genome size", 
          "model organisms", 
          "pseudo genes", 
          "novo assembly", 
          "genomic regions", 
          "alternative carbon sources", 
          "gene prediction", 
          "Thermus species", 
          "Thermus brockianus", 
          "finished genomes", 
          "gene transfer", 
          "genes", 
          "carbon source", 
          "small plasmids", 
          "PTB1", 
          "sequence", 
          "sole source", 
          "mechanism of action", 
          "growth experiments", 
          "metabolism", 
          "xylan depolymerization", 
          "enzyme", 
          "xylF", 
          "xylH", 
          "genome", 
          "extremophiles", 
          "chromosomes", 
          "Xyn10", 
          "xylA", 
          "ancestor", 
          "thermophiles", 
          "extremozymes", 
          "RNA", 
          "organisms", 
          "xylB", 
          "thermophilic", 
          "species", 
          "endoglucanase", 
          "bacterium", 
          "plasmid", 
          "annotation", 
          "Gram", 
          "xylan", 
          "assembly", 
          "thermostability", 
          "xylose", 
          "MB", 
          "depolymerization", 
          "first step", 
          "insights", 
          "mechanism", 
          "adaption", 
          "region", 
          "step", 
          "ability", 
          "elevated temperatures", 
          "source", 
          "carbon", 
          "geothermal area", 
          "action", 
          "size", 
          "process", 
          "experiments", 
          "transfer", 
          "Iceland", 
          "second step", 
          "quality values", 
          "area", 
          "data", 
          "total", 
          "features", 
          "prediction", 
          "detail", 
          "temperature", 
          "properties", 
          "values", 
          "methodology", 
          "agreement"
        ], 
        "name": "Complete genome sequence of Thermus brockianus GE-1 reveals key enzymes of xylan/xylose metabolism", 
        "pagination": "22", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083538399"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40793-017-0225-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28174620"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40793-017-0225-7", 
          "https://app.dimensions.ai/details/publication/pub.1083538399"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_717.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40793-017-0225-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40793-017-0225-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40793-017-0225-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40793-017-0225-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40793-017-0225-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    248 TRIPLES      21 PREDICATES      134 URIs      109 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40793-017-0225-7 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Nc1c84d437ef34ec5b7f2fc2e1bf6577a
    4 schema:citation sg:pub.10.1007/0-387-30747-8_32
    5 sg:pub.10.1007/978-0-387-21609-6_21
    6 sg:pub.10.1007/s00792-009-0226-6
    7 sg:pub.10.1007/s00792-011-0424-x
    8 sg:pub.10.1007/s12155-015-9600-7
    9 sg:pub.10.1038/75556
    10 sg:pub.10.1038/nbt1360
    11 sg:pub.10.1038/nbt956
    12 sg:pub.10.1038/nmeth.1701
    13 sg:pub.10.1038/nmeth.2474
    14 sg:pub.10.1038/scientificamerican0497-82
    15 sg:pub.10.1186/1471-2105-11-119
    16 sg:pub.10.1186/1471-2105-8-209
    17 sg:pub.10.1186/1471-2164-12-577
    18 sg:pub.10.1186/s13059-015-0849-0
    19 sg:pub.10.1186/s40793-015-0053-6
    20 sg:pub.10.1385/abab:90:2:155
    21 schema:datePublished 2017-02-03
    22 schema:datePublishedReg 2017-02-03
    23 schema:description Thermus brockianus strain GE-1 is a thermophilic, Gram-negative, rod-shaped and non-motile bacterium that was isolated from the Geysir geothermal area, Iceland. Like other thermophiles, Thermus species are often used as model organisms to understand the mechanism of action of extremozymes, especially focusing on their heat-activity and thermostability. Genome-specific features of T. brockianus GE-1 and their properties further help to explain processes of the adaption of extremophiles at elevated temperatures. Here we analyze the first whole genome sequence of T. brockianus strain GE-1. Insights of the genome sequence and the methodologies that were applied during de novo assembly and annotation are given in detail. The finished genome shows a phred quality value of QV50. The complete genome size is 2.38 Mb, comprising the chromosome (2,035,182 bp), the megaplasmid pTB1 (342,792 bp) and the smaller plasmid pTB2 (10,299 bp). Gene prediction revealed 2,511 genes in total, including 2,458 protein-encoding genes, 53 RNA and 66 pseudo genes. A unique genomic region on megaplasmid pTB1 was identified encoding key enzymes for xylan depolymerization and xylose metabolism. This is in agreement with the growth experiments in which xylan is utilized as sole source of carbon. Accordingly, we identified sequences encoding the xylanase Xyn10, an endoglucanase, the membrane ABC sugar transporter XylH, the xylose-binding protein XylF, the xylose isomerase XylA catalyzing the first step of xylose metabolism and the xylulokinase XylB, responsible for the second step of xylose metabolism. Our data indicate that an ancestor of T. brockianus obtained the ability to use xylose as alternative carbon source by horizontal gene transfer.
    24 schema:genre article
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N1138c8a038d145a5a56340333998d2ca
    27 N5ed1b46f35e843eea638972957d0195a
    28 sg:journal.1357741
    29 schema:keywords Ge 1
    30 Gram
    31 Iceland
    32 MB
    33 PTB1
    34 RNA
    35 Thermus brockianus
    36 Thermus species
    37 Xyn10
    38 ability
    39 action
    40 adaption
    41 agreement
    42 alternative carbon sources
    43 ancestor
    44 annotation
    45 area
    46 assembly
    47 bacterium
    48 carbon
    49 carbon source
    50 chromosomes
    51 complete genome sequence
    52 complete genome size
    53 data
    54 de novo assembly
    55 depolymerization
    56 detail
    57 elevated temperatures
    58 endoglucanase
    59 enzyme
    60 experiments
    61 extremophiles
    62 extremozymes
    63 features
    64 finished genomes
    65 first step
    66 first whole-genome sequence
    67 gene prediction
    68 gene transfer
    69 genes
    70 genome
    71 genome sequence
    72 genome size
    73 genome-specific features
    74 genomic regions
    75 geothermal area
    76 growth experiments
    77 horizontal gene transfer
    78 insights
    79 key enzyme
    80 mechanism
    81 mechanism of action
    82 metabolism
    83 methodology
    84 model organisms
    85 non-motile bacterium
    86 novo assembly
    87 organisms
    88 plasmid
    89 prediction
    90 process
    91 properties
    92 protein-encoding genes
    93 pseudo genes
    94 quality values
    95 region
    96 second step
    97 sequence
    98 size
    99 small plasmids
    100 sole source
    101 source
    102 species
    103 step
    104 temperature
    105 thermophiles
    106 thermophilic
    107 thermostability
    108 total
    109 transfer
    110 unique genomic regions
    111 values
    112 whole genome sequences
    113 xylA
    114 xylB
    115 xylF
    116 xylH
    117 xylan
    118 xylan depolymerization
    119 xylose
    120 xylose metabolism
    121 schema:name Complete genome sequence of Thermus brockianus GE-1 reveals key enzymes of xylan/xylose metabolism
    122 schema:pagination 22
    123 schema:productId N42b487ae4e1943daab2b120ec06615a9
    124 Nc707826c479140cdac4ece4571f7aa9f
    125 Neecc8446771c427c8a10f275fe341ae5
    126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083538399
    127 https://doi.org/10.1186/s40793-017-0225-7
    128 schema:sdDatePublished 2022-11-24T21:01
    129 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    130 schema:sdPublisher N3608727003894e619253c132f9b5185e
    131 schema:url https://doi.org/10.1186/s40793-017-0225-7
    132 sgo:license sg:explorer/license/
    133 sgo:sdDataset articles
    134 rdf:type schema:ScholarlyArticle
    135 N1138c8a038d145a5a56340333998d2ca schema:volumeNumber 12
    136 rdf:type schema:PublicationVolume
    137 N3204ba00ae7e4ed5ab91d1de8c54454d rdf:first sg:person.01271304705.44
    138 rdf:rest N4f4a9702bb8d423f8fc027bbe90e5312
    139 N3608727003894e619253c132f9b5185e schema:name Springer Nature - SN SciGraph project
    140 rdf:type schema:Organization
    141 N42b487ae4e1943daab2b120ec06615a9 schema:name pubmed_id
    142 schema:value 28174620
    143 rdf:type schema:PropertyValue
    144 N4f4a9702bb8d423f8fc027bbe90e5312 rdf:first sg:person.01170037002.91
    145 rdf:rest rdf:nil
    146 N5ed1b46f35e843eea638972957d0195a schema:issueNumber 1
    147 rdf:type schema:PublicationIssue
    148 N89ca0f041330478688a6e19c6b848d14 rdf:first sg:person.01253256126.46
    149 rdf:rest N3204ba00ae7e4ed5ab91d1de8c54454d
    150 Nadb85893f8244a318aa06a72f9c44d52 rdf:first sg:person.01164173776.94
    151 rdf:rest N89ca0f041330478688a6e19c6b848d14
    152 Nc1c84d437ef34ec5b7f2fc2e1bf6577a rdf:first sg:person.01052172175.88
    153 rdf:rest Nadb85893f8244a318aa06a72f9c44d52
    154 Nc707826c479140cdac4ece4571f7aa9f schema:name dimensions_id
    155 schema:value pub.1083538399
    156 rdf:type schema:PropertyValue
    157 Neecc8446771c427c8a10f275fe341ae5 schema:name doi
    158 schema:value 10.1186/s40793-017-0225-7
    159 rdf:type schema:PropertyValue
    160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Biological Sciences
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Genetics
    165 rdf:type schema:DefinedTerm
    166 sg:journal.1357741 schema:issn 2524-6372
    167 schema:name Environmental Microbiome
    168 schema:publisher Springer Nature
    169 rdf:type schema:Periodical
    170 sg:person.01052172175.88 schema:affiliation grid-institutes:grid.6884.2
    171 schema:familyName Schäfers
    172 schema:givenName Christian
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052172175.88
    174 rdf:type schema:Person
    175 sg:person.01164173776.94 schema:affiliation grid-institutes:grid.6884.2
    176 schema:familyName Blank
    177 schema:givenName Saskia
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164173776.94
    179 rdf:type schema:Person
    180 sg:person.01170037002.91 schema:affiliation grid-institutes:grid.6884.2
    181 schema:familyName Antranikian
    182 schema:givenName Garabed
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170037002.91
    184 rdf:type schema:Person
    185 sg:person.01253256126.46 schema:affiliation grid-institutes:grid.6884.2
    186 schema:familyName Wiebusch
    187 schema:givenName Sigrid
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253256126.46
    189 rdf:type schema:Person
    190 sg:person.01271304705.44 schema:affiliation grid-institutes:grid.6884.2
    191 schema:familyName Elleuche
    192 schema:givenName Skander
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271304705.44
    194 rdf:type schema:Person
    195 sg:pub.10.1007/0-387-30747-8_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017959274
    196 https://doi.org/10.1007/0-387-30747-8_32
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/978-0-387-21609-6_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041280961
    199 https://doi.org/10.1007/978-0-387-21609-6_21
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s00792-009-0226-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012155477
    202 https://doi.org/10.1007/s00792-009-0226-6
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s00792-011-0424-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040215440
    205 https://doi.org/10.1007/s00792-011-0424-x
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s12155-015-9600-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046736373
    208 https://doi.org/10.1007/s12155-015-9600-7
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
    211 https://doi.org/10.1038/75556
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nbt1360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038439506
    214 https://doi.org/10.1038/nbt1360
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nbt956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021991437
    217 https://doi.org/10.1038/nbt956
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nmeth.1701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049894869
    220 https://doi.org/10.1038/nmeth.1701
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nmeth.2474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002897135
    223 https://doi.org/10.1038/nmeth.2474
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/scientificamerican0497-82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056527507
    226 https://doi.org/10.1038/scientificamerican0497-82
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    229 https://doi.org/10.1186/1471-2105-11-119
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1186/1471-2105-8-209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020623557
    232 https://doi.org/10.1186/1471-2105-8-209
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1186/1471-2164-12-577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037131910
    235 https://doi.org/10.1186/1471-2164-12-577
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1186/s13059-015-0849-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048601364
    238 https://doi.org/10.1186/s13059-015-0849-0
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1186/s40793-015-0053-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032138799
    241 https://doi.org/10.1186/s40793-015-0053-6
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1385/abab:90:2:155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008608790
    244 https://doi.org/10.1385/abab:90:2:155
    245 rdf:type schema:CreativeWork
    246 grid-institutes:grid.6884.2 schema:alternateName Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstraße 12, 21073, Hamburg, Germany
    247 schema:name Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstraße 12, 21073, Hamburg, Germany
    248 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...