Improved simulation of carbon and water fluxes by assimilating multi-layer soil temperature and moisture into process-based biogeochemical model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Min Yan, Zengyuan Li, Xin Tian, Li Zhang, Yu Zhou

ABSTRACT

Soil temperature and moisture are sensitive indicators in soil organic matter decomposition because they control global carbon and water cycles and their potential feedback to climatic variations. Although the Biome-Biogeochemical Cycles (Biome-BGC) model is broadly applied in simulating forest carbon and water fluxes, its single-layer soil module cannot represent vertical variations in soil moisture. This study introduces the Biome-BGC MuSo model, which is composed of a multi-layer soil module and new modules pertaining to phenology and management for simulations of carbon and water fluxes. Although this model considers soil processes among active layers, estimates of soil-related variables might be biased, leading to inaccurate estimates of carbon and water fluxes. To improve the estimations of soil-related processes in Biome-BGC MuSo, this study assimilates ground-measured multi-layer daily soil temperature and moisture at the Changbai Mountains forest flux site by using the Ensemble Kalman Filter algorithm. The modeled estimates of water and carbon fluxes were evaluated with measurements using determination coefficient (R2) and root mean square error (RMSE). The differences in the RMSEs from Biome-BGC MuSo and the assimilated Biome-BGC MuSo were calculated (ΔRMSE), and the relationships between ΔRMSE and the climatic and biophysical factors were analyzed. Compared with the original Biome-BGC model, Biome-BGC MuSo improved the simulations of ecosystem respiration (ER), net ecosystem exchange (NEE) and evapotranspiration (ET). Data assimilation of the soil-related variables into Biome-BGC MuSo in real time improved the accuracies of the simulated carbon and water fluxes (ET: R2 = 0.81, RMSE = 0.70 mm·d− 1; ER: R2 = 0.85, RMSE = 1.97 gC·m− 2·d− 1; NEE: R2 = 0.70, RMSE = 1.16 gC·m− 2·d− 1). This study proved that seasonal simulation of carbon and water fluxes are more accurate when using Biome-BGC MuSo with a multi-layer soil module than using Biome-BGC with a single-layer soil module. Moreover, assimilating the observed soil temperature and moisture data into Biome-BGC MuSo improved the modeled estimates of water and carbon fluxes via calibrated soil-related simulations. The assimilation strategy is applicable to various climatic and biophysical conditions, particularly densely forested areas, and for local or regional simulation. More... »

PAGES

12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40663-019-0171-5

DOI

http://dx.doi.org/10.1186/s40663-019-0171-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113174943


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Remote Sensing and Digital Earth", 
          "id": "https://www.grid.ac/institutes/grid.458443.a", 
          "name": [
            "Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Min", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Forestry", 
          "id": "https://www.grid.ac/institutes/grid.216566.0", 
          "name": [
            "Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Zengyuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Forestry", 
          "id": "https://www.grid.ac/institutes/grid.216566.0", 
          "name": [
            "Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Xin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Remote Sensing and Digital Earth", 
          "id": "https://www.grid.ac/institutes/grid.458443.a", 
          "name": [
            "Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clark University", 
          "id": "https://www.grid.ac/institutes/grid.254277.1", 
          "name": [
            "Graduate School of Geography, Clark University, 01610, Worcester, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Yu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/treephys/9.1-2.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000826009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2012wr013473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002166037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x87-081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004609137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004wr003604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004963958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/94jc00572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006005755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1087-3562(2000)004<0003:pasaot>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007032336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11676-013-0382-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008775447", 
          "https://doi.org/10.1007/s11676-013-0382-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10533-006-9019-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012892341", 
          "https://doi.org/10.1007/s10533-006-9019-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10533-006-9019-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012892341", 
          "https://doi.org/10.1007/s10533-006-9019-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2009.02123.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016075844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2009.02123.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016075844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/23.11.735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017670965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1923(98)00126-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019169113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(88)90112-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019499690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(88)90112-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019499690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8070567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019813223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2013.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022558972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr014i004p00601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024234868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8306.1984.tb01473.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028267612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2005.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029797441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015gl064002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030412192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031012942", 
          "https://doi.org/10.1038/nature04514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031012942", 
          "https://doi.org/10.1038/nature04514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031012942", 
          "https://doi.org/10.1038/nature04514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00386231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032536189", 
          "https://doi.org/10.1007/bf00386231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00386231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032536189", 
          "https://doi.org/10.1007/bf00386231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-014-3300-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033782285", 
          "https://doi.org/10.1007/s12665-014-3300-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2006.10.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035117639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2007.04.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038029815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008wr007189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040739762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-3624-4_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045193583", 
          "https://doi.org/10.1007/978-94-017-3624-4_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jhm1068.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046344899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-9-4405-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048663930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.13489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048841743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1100/2012/590287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049479485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02888404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050100412", 
          "https://doi.org/10.1007/bf02888404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02888404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050100412", 
          "https://doi.org/10.1007/bf02888404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1002-0160(15)60052-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10236-003-0036-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053511041", 
          "https://doi.org/10.1007/s10236-003-0036-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/cr002183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071158318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075265684", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronmonogr31.c18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088349983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/su9071246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090739195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2017.10.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092482872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40663-018-0131-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100611482", 
          "https://doi.org/10.1186/s40663-018-0131-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40663-018-0131-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100611482", 
          "https://doi.org/10.1186/s40663-018-0131-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40663-018-0131-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100611482", 
          "https://doi.org/10.1186/s40663-018-0131-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40663-018-0131-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100611482", 
          "https://doi.org/10.1186/s40663-018-0131-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05214-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109712149", 
          "https://doi.org/10.1007/978-3-662-05214-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05214-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109712149", 
          "https://doi.org/10.1007/978-3-662-05214-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Soil temperature and moisture are sensitive indicators in soil organic matter decomposition because they control global carbon and water cycles and their potential feedback to climatic variations. Although the Biome-Biogeochemical Cycles (Biome-BGC) model is broadly applied in simulating forest carbon and water fluxes, its single-layer soil module cannot represent vertical variations in soil moisture. This study introduces the Biome-BGC MuSo model, which is composed of a multi-layer soil module and new modules pertaining to phenology and management for simulations of carbon and water fluxes. Although this model considers soil processes among active layers, estimates of soil-related variables might be biased, leading to inaccurate estimates of carbon and water fluxes. To improve the estimations of soil-related processes in Biome-BGC MuSo, this study assimilates ground-measured multi-layer daily soil temperature and moisture at the Changbai Mountains forest flux site by using the Ensemble Kalman Filter algorithm. The modeled estimates of water and carbon fluxes were evaluated with measurements using determination coefficient (R2) and root mean square error (RMSE). The differences in the RMSEs from Biome-BGC MuSo and the assimilated Biome-BGC MuSo were calculated (\u0394RMSE), and the relationships between \u0394RMSE and the climatic and biophysical factors were analyzed. Compared with the original Biome-BGC model, Biome-BGC MuSo improved the simulations of ecosystem respiration (ER), net ecosystem exchange (NEE) and evapotranspiration (ET). Data assimilation of the soil-related variables into Biome-BGC MuSo in real time improved the accuracies of the simulated carbon and water fluxes (ET: R2 = 0.81, RMSE = 0.70 mm\u00b7d\u2212 1; ER: R2 = 0.85, RMSE = 1.97 gC\u00b7m\u2212 2\u00b7d\u2212 1; NEE: R2 = 0.70, RMSE = 1.16 gC\u00b7m\u2212 2\u00b7d\u2212 1). This study proved that seasonal simulation of carbon and water fluxes are more accurate when using Biome-BGC MuSo with a multi-layer soil module than using Biome-BGC with a single-layer soil module. Moreover, assimilating the observed soil temperature and moisture data into Biome-BGC MuSo improved the modeled estimates of water and carbon fluxes via calibrated soil-related simulations. The assimilation strategy is applicable to various climatic and biophysical conditions, particularly densely forested areas, and for local or regional simulation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40663-019-0171-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1284769", 
        "issn": [
          "2095-6355", 
          "2197-5620"
        ], 
        "name": "Forest Ecosystems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Improved simulation of carbon and water fluxes by assimilating multi-layer soil temperature and moisture into process-based biogeochemical model", 
    "pagination": "12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9fc8b61bd50fc00c986bd6452f29c6fe9d4027c83d1d33c7f7800970b12e2297"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40663-019-0171-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113174943"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40663-019-0171-5", 
      "https://app.dimensions.ai/details/publication/pub.1113174943"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130797_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40663-019-0171-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40663-019-0171-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40663-019-0171-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40663-019-0171-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40663-019-0171-5'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40663-019-0171-5 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author Ndaef6313e7984a5ba25eb85eaa84edd7
4 schema:citation sg:pub.10.1007/978-3-662-05214-3
5 sg:pub.10.1007/978-94-017-3624-4_3
6 sg:pub.10.1007/bf00386231
7 sg:pub.10.1007/bf02888404
8 sg:pub.10.1007/s10236-003-0036-9
9 sg:pub.10.1007/s10533-006-9019-5
10 sg:pub.10.1007/s11676-013-0382-5
11 sg:pub.10.1007/s12665-014-3300-z
12 sg:pub.10.1038/nature04514
13 sg:pub.10.1186/s40663-018-0131-5
14 https://app.dimensions.ai/details/publication/pub.1075265684
15 https://doi.org/10.1002/2012wr013473
16 https://doi.org/10.1002/2015gl064002
17 https://doi.org/10.1016/0304-3800(88)90112-3
18 https://doi.org/10.1016/j.ecolmodel.2005.04.008
19 https://doi.org/10.1016/j.jhydrol.2017.10.078
20 https://doi.org/10.1016/j.rse.2006.10.027
21 https://doi.org/10.1016/j.rse.2007.04.015
22 https://doi.org/10.1016/j.rse.2013.07.018
23 https://doi.org/10.1016/s0168-1923(98)00126-9
24 https://doi.org/10.1016/s1002-0160(15)60052-2
25 https://doi.org/10.1029/2004wr003604
26 https://doi.org/10.1029/2008wr007189
27 https://doi.org/10.1029/94jc00572
28 https://doi.org/10.1029/wr014i004p00601
29 https://doi.org/10.1093/treephys/23.11.735
30 https://doi.org/10.1093/treephys/9.1-2.147
31 https://doi.org/10.1100/2012/590287
32 https://doi.org/10.1111/gcb.13489
33 https://doi.org/10.1111/j.1365-2486.2009.02123.x
34 https://doi.org/10.1111/j.1467-8306.1984.tb01473.x
35 https://doi.org/10.1139/x87-081
36 https://doi.org/10.1175/1087-3562(2000)004<0003:pasaot>2.0.co;2
37 https://doi.org/10.1175/2008jhm1068.1
38 https://doi.org/10.2134/agronmonogr31.c18
39 https://doi.org/10.3354/cr002183
40 https://doi.org/10.3390/rs8070567
41 https://doi.org/10.3390/su9071246
42 https://doi.org/10.5194/gmd-9-4405-2016
43 schema:datePublished 2019-12
44 schema:datePublishedReg 2019-12-01
45 schema:description Soil temperature and moisture are sensitive indicators in soil organic matter decomposition because they control global carbon and water cycles and their potential feedback to climatic variations. Although the Biome-Biogeochemical Cycles (Biome-BGC) model is broadly applied in simulating forest carbon and water fluxes, its single-layer soil module cannot represent vertical variations in soil moisture. This study introduces the Biome-BGC MuSo model, which is composed of a multi-layer soil module and new modules pertaining to phenology and management for simulations of carbon and water fluxes. Although this model considers soil processes among active layers, estimates of soil-related variables might be biased, leading to inaccurate estimates of carbon and water fluxes. To improve the estimations of soil-related processes in Biome-BGC MuSo, this study assimilates ground-measured multi-layer daily soil temperature and moisture at the Changbai Mountains forest flux site by using the Ensemble Kalman Filter algorithm. The modeled estimates of water and carbon fluxes were evaluated with measurements using determination coefficient (R2) and root mean square error (RMSE). The differences in the RMSEs from Biome-BGC MuSo and the assimilated Biome-BGC MuSo were calculated (ΔRMSE), and the relationships between ΔRMSE and the climatic and biophysical factors were analyzed. Compared with the original Biome-BGC model, Biome-BGC MuSo improved the simulations of ecosystem respiration (ER), net ecosystem exchange (NEE) and evapotranspiration (ET). Data assimilation of the soil-related variables into Biome-BGC MuSo in real time improved the accuracies of the simulated carbon and water fluxes (ET: R2 = 0.81, RMSE = 0.70 mm·d− 1; ER: R2 = 0.85, RMSE = 1.97 gC·m− 2·d− 1; NEE: R2 = 0.70, RMSE = 1.16 gC·m− 2·d− 1). This study proved that seasonal simulation of carbon and water fluxes are more accurate when using Biome-BGC MuSo with a multi-layer soil module than using Biome-BGC with a single-layer soil module. Moreover, assimilating the observed soil temperature and moisture data into Biome-BGC MuSo improved the modeled estimates of water and carbon fluxes via calibrated soil-related simulations. The assimilation strategy is applicable to various climatic and biophysical conditions, particularly densely forested areas, and for local or regional simulation.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N134d227f242f48fe8236ee1208259f00
50 N2f3d20521c3944ef951d5da7e5b2ed6c
51 sg:journal.1284769
52 schema:name Improved simulation of carbon and water fluxes by assimilating multi-layer soil temperature and moisture into process-based biogeochemical model
53 schema:pagination 12
54 schema:productId N648c525f4f304c3cb83fe4ed17e5a28e
55 N8c97ef03728942baa67ab8ac1b4a4990
56 Nd13b35a9cb224ded8b9d15861eb0f033
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113174943
58 https://doi.org/10.1186/s40663-019-0171-5
59 schema:sdDatePublished 2019-04-11T13:51
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N11aa6e19833f490484bc1dffcbfb11c8
62 schema:url https://link.springer.com/10.1186%2Fs40663-019-0171-5
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N11aa6e19833f490484bc1dffcbfb11c8 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N134d227f242f48fe8236ee1208259f00 schema:issueNumber 1
69 rdf:type schema:PublicationIssue
70 N252e6ebff9b14631bf6e7d1f1a2d38bd rdf:first Ncae4bb462a404b819489555b36039e28
71 rdf:rest Nc05481654ee742f782c3162310bd9912
72 N2777cefa5c4e44c28c183c7e5897b4c8 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
73 schema:familyName Zhang
74 schema:givenName Li
75 rdf:type schema:Person
76 N29ba0b5fb8d846dfaab3a76b02bcd48e rdf:first Ndbf34d94654640e1a9a8555fd7f072ae
77 rdf:rest rdf:nil
78 N2f3d20521c3944ef951d5da7e5b2ed6c schema:volumeNumber 6
79 rdf:type schema:PublicationVolume
80 N338252f8a97249878d8a69e80e9e5711 rdf:first N2777cefa5c4e44c28c183c7e5897b4c8
81 rdf:rest N29ba0b5fb8d846dfaab3a76b02bcd48e
82 N49b19f6410c0483897b844545b00b9a3 schema:affiliation https://www.grid.ac/institutes/grid.216566.0
83 schema:familyName Tian
84 schema:givenName Xin
85 rdf:type schema:Person
86 N648c525f4f304c3cb83fe4ed17e5a28e schema:name doi
87 schema:value 10.1186/s40663-019-0171-5
88 rdf:type schema:PropertyValue
89 N6f018e20799b4c37af525bb11e2f00e3 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
90 schema:familyName Yan
91 schema:givenName Min
92 rdf:type schema:Person
93 N8c97ef03728942baa67ab8ac1b4a4990 schema:name readcube_id
94 schema:value 9fc8b61bd50fc00c986bd6452f29c6fe9d4027c83d1d33c7f7800970b12e2297
95 rdf:type schema:PropertyValue
96 Nc05481654ee742f782c3162310bd9912 rdf:first N49b19f6410c0483897b844545b00b9a3
97 rdf:rest N338252f8a97249878d8a69e80e9e5711
98 Ncae4bb462a404b819489555b36039e28 schema:affiliation https://www.grid.ac/institutes/grid.216566.0
99 schema:familyName Li
100 schema:givenName Zengyuan
101 rdf:type schema:Person
102 Nd13b35a9cb224ded8b9d15861eb0f033 schema:name dimensions_id
103 schema:value pub.1113174943
104 rdf:type schema:PropertyValue
105 Ndaef6313e7984a5ba25eb85eaa84edd7 rdf:first N6f018e20799b4c37af525bb11e2f00e3
106 rdf:rest N252e6ebff9b14631bf6e7d1f1a2d38bd
107 Ndbf34d94654640e1a9a8555fd7f072ae schema:affiliation https://www.grid.ac/institutes/grid.254277.1
108 schema:familyName Zhou
109 schema:givenName Yu
110 rdf:type schema:Person
111 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
112 schema:name Environmental Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
115 schema:name Soil Sciences
116 rdf:type schema:DefinedTerm
117 sg:journal.1284769 schema:issn 2095-6355
118 2197-5620
119 schema:name Forest Ecosystems
120 rdf:type schema:Periodical
121 sg:pub.10.1007/978-3-662-05214-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109712149
122 https://doi.org/10.1007/978-3-662-05214-3
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-94-017-3624-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045193583
125 https://doi.org/10.1007/978-94-017-3624-4_3
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf00386231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032536189
128 https://doi.org/10.1007/bf00386231
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/bf02888404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050100412
131 https://doi.org/10.1007/bf02888404
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s10236-003-0036-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053511041
134 https://doi.org/10.1007/s10236-003-0036-9
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s10533-006-9019-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012892341
137 https://doi.org/10.1007/s10533-006-9019-5
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s11676-013-0382-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008775447
140 https://doi.org/10.1007/s11676-013-0382-5
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s12665-014-3300-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033782285
143 https://doi.org/10.1007/s12665-014-3300-z
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nature04514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031012942
146 https://doi.org/10.1038/nature04514
147 rdf:type schema:CreativeWork
148 sg:pub.10.1186/s40663-018-0131-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100611482
149 https://doi.org/10.1186/s40663-018-0131-5
150 rdf:type schema:CreativeWork
151 https://app.dimensions.ai/details/publication/pub.1075265684 schema:CreativeWork
152 https://doi.org/10.1002/2012wr013473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002166037
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/2015gl064002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030412192
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/0304-3800(88)90112-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019499690
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.ecolmodel.2005.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029797441
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jhydrol.2017.10.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092482872
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.rse.2006.10.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035117639
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.rse.2007.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038029815
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.rse.2013.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022558972
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0168-1923(98)00126-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019169113
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s1002-0160(15)60052-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408741
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1029/2004wr003604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004963958
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1029/2008wr007189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040739762
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1029/94jc00572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006005755
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1029/wr014i004p00601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024234868
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/treephys/23.11.735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017670965
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/treephys/9.1-2.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000826009
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1100/2012/590287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049479485
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1111/gcb.13489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048841743
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1111/j.1365-2486.2009.02123.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016075844
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1111/j.1467-8306.1984.tb01473.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028267612
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1139/x87-081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004609137
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1175/1087-3562(2000)004<0003:pasaot>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007032336
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1175/2008jhm1068.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046344899
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2134/agronmonogr31.c18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088349983
199 rdf:type schema:CreativeWork
200 https://doi.org/10.3354/cr002183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071158318
201 rdf:type schema:CreativeWork
202 https://doi.org/10.3390/rs8070567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019813223
203 rdf:type schema:CreativeWork
204 https://doi.org/10.3390/su9071246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090739195
205 rdf:type schema:CreativeWork
206 https://doi.org/10.5194/gmd-9-4405-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048663930
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.216566.0 schema:alternateName Chinese Academy of Forestry
209 schema:name Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, China
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.254277.1 schema:alternateName Clark University
212 schema:name Graduate School of Geography, Clark University, 01610, Worcester, MA, USA
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.458443.a schema:alternateName Institute of Remote Sensing and Digital Earth
215 schema:name Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...