The effect of spatial structure of forests on the precision and costs of plot-level forest resource estimation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-06

AUTHORS

Henrike Häbel, Mikko Kuronen, Helena M. Henttonen, Annika Kangas, Mari Myllymäki

ABSTRACT

BackgroundWe investigated how the precision and costs of forest resource estimates for sample plots of different type and size depend on the spatial structure of forests and jointly studied the effects of tree density and size distribution. Statistically thinking, the trees in a forest can be regarded as a point pattern. Based on the spatial properties of the point pattern, we classified the forests into clustered, random, and regular. We used empirical data from 396 mapped forest plots from Finland. The variance of the unbiased Horvitz-Thompson estimator and expected costs of the basal area and tree density estimation were calculated for 99 different sample plots of different type and size in each of the 396 forest plots. Further, we considered the estimation of the change between two time points for a subset of the data.ResultsThe precision and expected cost depended on the tree size distribution and spatial pattern of trees. While large sample plots are advisable for clustered forests or the monitoring of young forests with small trees, we see potential for measuring smaller sample plots in regular forests. The choice of sample plot was more important in clustered forests, where also the variability of the expected costs was higher.ConclusionsIf the spatial structure of forests could be predicted accurately and precisely prior to field measurements, for instance from remote sensing data, the precision of forest inventories could potentially be improved or costs decreased by allowing the sample plot size and type to vary from one forest stand to another. When using a compromise sample plot over a large region and a long inventory rotation, optimizing the sample plot for one time point ignores possible changes in forest structures caused by changes in forest management practices. More... »

PAGES

8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40663-019-0167-1

DOI

http://dx.doi.org/10.1186/s40663-019-0167-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112593563


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0705", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Forestry Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.22642.30", 
          "name": [
            "Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e4bel", 
        "givenName": "Henrike", 
        "id": "sg:person.01064465221.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064465221.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.22642.30", 
          "name": [
            "Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuronen", 
        "givenName": "Mikko", 
        "id": "sg:person.011246773374.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011246773374.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.22642.30", 
          "name": [
            "Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henttonen", 
        "givenName": "Helena M.", 
        "id": "sg:person.013650134542.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013650134542.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Natural Resources Institute Finland (Luke), Yliopistokatu 6, 80100, Joensuu, Finland", 
          "id": "http://www.grid.ac/institutes/grid.22642.30", 
          "name": [
            "Natural Resources Institute Finland (Luke), Yliopistokatu 6, 80100, Joensuu, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kangas", 
        "givenName": "Annika", 
        "id": "sg:person.014027320451.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014027320451.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.22642.30", 
          "name": [
            "Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Myllym\u00e4ki", 
        "givenName": "Mari", 
        "id": "sg:person.01167716034.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167716034.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-007-1652-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035892620", 
          "https://doi.org/10.1007/978-94-007-1652-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2197-5620-1-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029197806", 
          "https://doi.org/10.1186/2197-5620-1-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40663-015-0055-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035371146", 
          "https://doi.org/10.1186/s40663-015-0055-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-06", 
    "datePublishedReg": "2019-03-06", 
    "description": "BackgroundWe investigated how the precision and costs of forest resource estimates for sample plots of different type and size depend on the spatial structure of forests and jointly studied the effects of tree density and size distribution. Statistically thinking, the trees in a forest can be regarded as a point pattern. Based on the spatial properties of the point pattern, we classified the forests into clustered, random, and regular. We used empirical data from 396 mapped forest plots from Finland. The variance of the unbiased Horvitz-Thompson estimator and expected costs of the basal area and tree density estimation were calculated for 99 different sample plots of different type and size in each of the 396 forest plots. Further, we considered the estimation of the change between two time points for a subset of the data.ResultsThe precision and expected cost depended on the tree size distribution and spatial pattern of trees. While large sample plots are advisable for clustered forests or the monitoring of young forests with small trees, we see potential for measuring smaller sample plots in regular forests. The choice of sample plot was more important in clustered forests, where also the variability of the expected costs was higher.ConclusionsIf the spatial structure of forests could be predicted accurately and precisely prior to field measurements, for instance from remote sensing data, the precision of forest inventories could potentially be improved or costs decreased by allowing the sample plot size and type to vary from one forest stand to another. When using a compromise sample plot over a large region and a long inventory rotation, optimizing the sample plot for one time point ignores possible changes in forest structures caused by changes in forest management practices.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40663-019-0167-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6454695", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5165631", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5324370", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1398477", 
        "issn": [
          "2095-6355", 
          "2197-5620"
        ], 
        "name": "Forest Ecosystems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "sample plots", 
      "forest plots", 
      "forest management practices", 
      "small sample plots", 
      "tree size distribution", 
      "forest resource estimates", 
      "different sample plots", 
      "tree density estimation", 
      "large sample plots", 
      "sample plot size", 
      "regular forests", 
      "young forests", 
      "forest structure", 
      "forest stands", 
      "forest inventory", 
      "tree density", 
      "basal area", 
      "plot size", 
      "management practices", 
      "small trees", 
      "forest", 
      "inventory rotation", 
      "plots", 
      "trees", 
      "spatial structure", 
      "spatial patterns", 
      "stands", 
      "field measurements", 
      "point patterns", 
      "rotation", 
      "cost", 
      "possible changes", 
      "variability", 
      "large regions", 
      "Finland", 
      "practice", 
      "resource estimates", 
      "area", 
      "potential", 
      "size", 
      "effect", 
      "density", 
      "patterns", 
      "changes", 
      "empirical data", 
      "different types", 
      "Inventory", 
      "types", 
      "estimation", 
      "region", 
      "Horvitz-Thompson estimator", 
      "variance", 
      "estimates", 
      "distribution", 
      "data", 
      "size distribution", 
      "resource estimation", 
      "monitoring", 
      "density estimation", 
      "precision", 
      "choice", 
      "time points", 
      "structure", 
      "spatial properties", 
      "instances", 
      "point", 
      "properties", 
      "subset", 
      "measurements", 
      "ConclusionsIf", 
      "BackgroundWe", 
      "estimator", 
      "unbiased Horvitz-Thompson estimator", 
      "compromise sample plot", 
      "long inventory rotation", 
      "plot-level forest resource estimation", 
      "forest resource estimation"
    ], 
    "name": "The effect of spatial structure of forests on the precision and costs of plot-level forest resource estimation", 
    "pagination": "8", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112593563"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40663-019-0167-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40663-019-0167-1", 
      "https://app.dimensions.ai/details/publication/pub.1112593563"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_810.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40663-019-0167-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40663-019-0167-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40663-019-0167-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40663-019-0167-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40663-019-0167-1'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      22 PREDICATES      105 URIs      94 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40663-019-0167-1 schema:about anzsrc-for:07
2 anzsrc-for:0705
3 schema:author N3757ee2547b648ebb8feddac72be7194
4 schema:citation sg:pub.10.1007/978-94-007-1652-0
5 sg:pub.10.1186/2197-5620-1-5
6 sg:pub.10.1186/s40663-015-0055-2
7 schema:datePublished 2019-03-06
8 schema:datePublishedReg 2019-03-06
9 schema:description BackgroundWe investigated how the precision and costs of forest resource estimates for sample plots of different type and size depend on the spatial structure of forests and jointly studied the effects of tree density and size distribution. Statistically thinking, the trees in a forest can be regarded as a point pattern. Based on the spatial properties of the point pattern, we classified the forests into clustered, random, and regular. We used empirical data from 396 mapped forest plots from Finland. The variance of the unbiased Horvitz-Thompson estimator and expected costs of the basal area and tree density estimation were calculated for 99 different sample plots of different type and size in each of the 396 forest plots. Further, we considered the estimation of the change between two time points for a subset of the data.ResultsThe precision and expected cost depended on the tree size distribution and spatial pattern of trees. While large sample plots are advisable for clustered forests or the monitoring of young forests with small trees, we see potential for measuring smaller sample plots in regular forests. The choice of sample plot was more important in clustered forests, where also the variability of the expected costs was higher.ConclusionsIf the spatial structure of forests could be predicted accurately and precisely prior to field measurements, for instance from remote sensing data, the precision of forest inventories could potentially be improved or costs decreased by allowing the sample plot size and type to vary from one forest stand to another. When using a compromise sample plot over a large region and a long inventory rotation, optimizing the sample plot for one time point ignores possible changes in forest structures caused by changes in forest management practices.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N26f285d22c3649a5b169bd5f590c6ae2
14 Ned97fc6ab50143468cc4e11bebbdb6ee
15 sg:journal.1398477
16 schema:keywords BackgroundWe
17 ConclusionsIf
18 Finland
19 Horvitz-Thompson estimator
20 Inventory
21 area
22 basal area
23 changes
24 choice
25 compromise sample plot
26 cost
27 data
28 density
29 density estimation
30 different sample plots
31 different types
32 distribution
33 effect
34 empirical data
35 estimates
36 estimation
37 estimator
38 field measurements
39 forest
40 forest inventory
41 forest management practices
42 forest plots
43 forest resource estimates
44 forest resource estimation
45 forest stands
46 forest structure
47 instances
48 inventory rotation
49 large regions
50 large sample plots
51 long inventory rotation
52 management practices
53 measurements
54 monitoring
55 patterns
56 plot size
57 plot-level forest resource estimation
58 plots
59 point
60 point patterns
61 possible changes
62 potential
63 practice
64 precision
65 properties
66 region
67 regular forests
68 resource estimates
69 resource estimation
70 rotation
71 sample plot size
72 sample plots
73 size
74 size distribution
75 small sample plots
76 small trees
77 spatial patterns
78 spatial properties
79 spatial structure
80 stands
81 structure
82 subset
83 time points
84 tree density
85 tree density estimation
86 tree size distribution
87 trees
88 types
89 unbiased Horvitz-Thompson estimator
90 variability
91 variance
92 young forests
93 schema:name The effect of spatial structure of forests on the precision and costs of plot-level forest resource estimation
94 schema:pagination 8
95 schema:productId N4e6966690eb1409f9be45317bc46debc
96 N5ffd47c33e9a4cdf8172eb513cb81951
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112593563
98 https://doi.org/10.1186/s40663-019-0167-1
99 schema:sdDatePublished 2021-12-01T19:44
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N8abbda5ae3884057a0ddbb519f249e88
102 schema:url https://doi.org/10.1186/s40663-019-0167-1
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N073c1a5df414492eb9667f8f458e65b4 rdf:first sg:person.013650134542.88
107 rdf:rest N0b0431e16a7549ec85ff911e08c30609
108 N0b0431e16a7549ec85ff911e08c30609 rdf:first sg:person.014027320451.10
109 rdf:rest N7d24415308184d5da4106d970634041a
110 N26f285d22c3649a5b169bd5f590c6ae2 schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 N3757ee2547b648ebb8feddac72be7194 rdf:first sg:person.01064465221.24
113 rdf:rest Nc24a86b868fb46f58d41c4f7bffba286
114 N4e6966690eb1409f9be45317bc46debc schema:name doi
115 schema:value 10.1186/s40663-019-0167-1
116 rdf:type schema:PropertyValue
117 N5ffd47c33e9a4cdf8172eb513cb81951 schema:name dimensions_id
118 schema:value pub.1112593563
119 rdf:type schema:PropertyValue
120 N7d24415308184d5da4106d970634041a rdf:first sg:person.01167716034.12
121 rdf:rest rdf:nil
122 N8abbda5ae3884057a0ddbb519f249e88 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Nc24a86b868fb46f58d41c4f7bffba286 rdf:first sg:person.011246773374.25
125 rdf:rest N073c1a5df414492eb9667f8f458e65b4
126 Ned97fc6ab50143468cc4e11bebbdb6ee schema:volumeNumber 6
127 rdf:type schema:PublicationVolume
128 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
129 schema:name Agricultural and Veterinary Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0705 schema:inDefinedTermSet anzsrc-for:
132 schema:name Forestry Sciences
133 rdf:type schema:DefinedTerm
134 sg:grant.5165631 http://pending.schema.org/fundedItem sg:pub.10.1186/s40663-019-0167-1
135 rdf:type schema:MonetaryGrant
136 sg:grant.5324370 http://pending.schema.org/fundedItem sg:pub.10.1186/s40663-019-0167-1
137 rdf:type schema:MonetaryGrant
138 sg:grant.6454695 http://pending.schema.org/fundedItem sg:pub.10.1186/s40663-019-0167-1
139 rdf:type schema:MonetaryGrant
140 sg:journal.1398477 schema:issn 2095-6355
141 2197-5620
142 schema:name Forest Ecosystems
143 schema:publisher Springer Nature
144 rdf:type schema:Periodical
145 sg:person.01064465221.24 schema:affiliation grid-institutes:grid.22642.30
146 schema:familyName Häbel
147 schema:givenName Henrike
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064465221.24
149 rdf:type schema:Person
150 sg:person.011246773374.25 schema:affiliation grid-institutes:grid.22642.30
151 schema:familyName Kuronen
152 schema:givenName Mikko
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011246773374.25
154 rdf:type schema:Person
155 sg:person.01167716034.12 schema:affiliation grid-institutes:grid.22642.30
156 schema:familyName Myllymäki
157 schema:givenName Mari
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167716034.12
159 rdf:type schema:Person
160 sg:person.013650134542.88 schema:affiliation grid-institutes:grid.22642.30
161 schema:familyName Henttonen
162 schema:givenName Helena M.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013650134542.88
164 rdf:type schema:Person
165 sg:person.014027320451.10 schema:affiliation grid-institutes:grid.22642.30
166 schema:familyName Kangas
167 schema:givenName Annika
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014027320451.10
169 rdf:type schema:Person
170 sg:pub.10.1007/978-94-007-1652-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035892620
171 https://doi.org/10.1007/978-94-007-1652-0
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/2197-5620-1-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029197806
174 https://doi.org/10.1186/2197-5620-1-5
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/s40663-015-0055-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035371146
177 https://doi.org/10.1186/s40663-015-0055-2
178 rdf:type schema:CreativeWork
179 grid-institutes:grid.22642.30 schema:alternateName Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland
180 Natural Resources Institute Finland (Luke), Yliopistokatu 6, 80100, Joensuu, Finland
181 schema:name Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland
182 Natural Resources Institute Finland (Luke), Yliopistokatu 6, 80100, Joensuu, Finland
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...