Fully automated identification of brain abnormality from whole-body FDG-PET imaging using deep learning-based brain extraction and statistical parametric mapping View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-14

AUTHORS

Wonseok Whi, Hongyoon Choi, Jin Chul Paeng, Gi Jeong Cheon, Keon Wook Kang, Dong Soo Lee

ABSTRACT

BackgroundThe whole brain is often covered in [18F]Fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) in oncology patients, but the covered brain abnormality is typically screened by visual interpretation without quantitative analysis in clinical practice. In this study, we aimed to develop a fully automated quantitative interpretation pipeline of brain volume from an oncology PET image.MethodWe retrospectively collected 500 oncologic [18F]FDG-PET scans for training and validation of the automated brain extractor. We trained the model for extracting brain volume with two manually drawn bounding boxes on maximal intensity projection images. ResNet-50, a 2-D convolutional neural network (CNN), was used for the model training. The brain volume was automatically extracted using the CNN model and spatially normalized. For validation of the trained model and an application of this automated analytic method, we enrolled 24 subjects with small cell lung cancer (SCLC) and performed voxel-wise two-sample T test for automatic detection of metastatic lesions.ResultThe deep learning-based brain extractor successfully identified the existence of whole-brain volume, with an accuracy of 98% for the validation set. The performance of extracting the brain measured by the intersection-over-union of 3-D bounding boxes was 72.9 ± 12.5% for the validation set. As an example of the application to automatically identify brain abnormality, this approach successfully identified the metastatic lesions in three of the four cases of SCLC patients with brain metastasis.ConclusionBased on the deep learning-based model, extraction of the brain volume from whole-body PET was successfully performed. We suggest this fully automated approach could be used for the quantitative analysis of brain metabolic patterns to identify abnormalities during clinical interpretation of oncologic PET studies. More... »

PAGES

79

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40658-021-00424-0

DOI

http://dx.doi.org/10.1186/s40658-021-00424-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142584462

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34778923


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, 03080, Seoul, Republic of Korea", 
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Whi", 
        "givenName": "Wonseok", 
        "id": "sg:person.010530452343.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530452343.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Hongyoon", 
        "id": "sg:person.0631257534.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paeng", 
        "givenName": "Jin Chul", 
        "id": "sg:person.01343511335.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheon", 
        "givenName": "Gi Jeong", 
        "id": "sg:person.01333472502.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Keon Wook", 
        "id": "sg:person.0761746266.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10278-017-9983-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085753273", 
          "https://doi.org/10.1007/s10278-017-9983-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-020-63821-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126821736", 
          "https://doi.org/10.1038/s41598-020-63821-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-006-9380-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007995996", 
          "https://doi.org/10.1007/s10549-006-9380-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-1767-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041268848", 
          "https://doi.org/10.1007/s00259-005-1767-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13748-019-00203-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123579044", 
          "https://doi.org/10.1007/s13748-019-00203-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-020-03647-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130862486", 
          "https://doi.org/10.1186/s12859-020-03647-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-007-0104-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034373795", 
          "https://doi.org/10.1007/s12149-007-0104-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11547-015-0597-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020135675", 
          "https://doi.org/10.1007/s11547-015-0597-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-14", 
    "datePublishedReg": "2021-11-14", 
    "description": "BackgroundThe whole brain is often covered in [18F]Fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) in oncology patients, but the covered brain abnormality is typically screened by visual interpretation without quantitative analysis in clinical practice. In this study, we aimed to develop a fully automated quantitative interpretation pipeline of brain volume from an oncology PET image.MethodWe retrospectively collected 500 oncologic [18F]FDG-PET scans for training and validation of the automated brain extractor. We trained the model for extracting brain volume with two manually drawn bounding boxes on maximal intensity projection images. ResNet-50, a 2-D convolutional neural network (CNN), was used for the model training. The brain volume was automatically extracted using the CNN model and spatially normalized. For validation of the trained model and an application of this automated analytic method, we enrolled 24 subjects with small cell lung cancer (SCLC) and performed voxel-wise two-sample T test for automatic detection of metastatic lesions.ResultThe deep learning-based brain extractor successfully identified the existence of whole-brain volume, with an accuracy of 98% for the validation set. The performance of extracting the brain measured by the intersection-over-union of 3-D bounding boxes was 72.9\u2009\u00b1\u200912.5% for the validation set. As an example of the application to automatically identify brain abnormality, this approach successfully identified the metastatic lesions in three of the four cases of SCLC patients with brain metastasis.ConclusionBased on the deep learning-based model, extraction of the brain volume from whole-body PET was successfully performed. We suggest this fully automated approach could be used for the quantitative analysis of brain metabolic patterns to identify abnormalities during clinical interpretation of oncologic PET studies.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40658-021-00424-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1051885", 
        "issn": [
          "2197-7364"
        ], 
        "name": "EJNMMI Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "small cell lung cancer", 
      "convolutional neural network", 
      "brain volume", 
      "brain abnormalities", 
      "metastatic lesions", 
      "bounding boxes", 
      "whole-body FDG-PET imaging", 
      "deep learning-based model", 
      "maximal intensity projection images", 
      "brain metabolic patterns", 
      "cell lung cancer", 
      "FDG-PET imaging", 
      "whole brain volume", 
      "learning-based models", 
      "positron emission tomography", 
      "statistical parametric mapping", 
      "two-sample t-test", 
      "SCLC patients", 
      "brain metastases", 
      "oncology patients", 
      "lung cancer", 
      "CNN model", 
      "ResNet-50", 
      "whole-body PET", 
      "PET scans", 
      "neural network", 
      "model training", 
      "clinical practice", 
      "automatic detection", 
      "whole brain", 
      "emission tomography", 
      "PET studies", 
      "abnormalities", 
      "validation set", 
      "interpretation pipeline", 
      "metabolic patterns", 
      "parametric mapping", 
      "brain extraction", 
      "clinical interpretation", 
      "patients", 
      "t-test", 
      "lesions", 
      "brain", 
      "extractor", 
      "projection images", 
      "PET images", 
      "visual interpretation", 
      "images", 
      "metastasis", 
      "cancer", 
      "set", 
      "tomography", 
      "scans", 
      "volume", 
      "MethodWe", 
      "network", 
      "extraction", 
      "applications", 
      "study", 
      "quantitative analysis", 
      "analytic methods", 
      "subjects", 
      "training", 
      "imaging", 
      "box", 
      "PET", 
      "pipeline", 
      "model", 
      "accuracy", 
      "validation", 
      "cases", 
      "performance", 
      "detection", 
      "test", 
      "mapping", 
      "analysis", 
      "practice", 
      "example", 
      "intersection", 
      "patterns", 
      "identification", 
      "method", 
      "approach", 
      "interpretation", 
      "Union", 
      "existence"
    ], 
    "name": "Fully automated identification of brain abnormality from whole-body FDG-PET imaging using deep learning-based brain extraction and statistical parametric mapping", 
    "pagination": "79", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142584462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40658-021-00424-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34778923"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40658-021-00424-0", 
      "https://app.dimensions.ai/details/publication/pub.1142584462"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_912.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40658-021-00424-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40658-021-00424-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40658-021-00424-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40658-021-00424-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40658-021-00424-0'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      119 URIs      103 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40658-021-00424-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N495d60c9c4374b428d647c9c5ef51085
4 schema:citation sg:pub.10.1007/s00259-005-1767-2
5 sg:pub.10.1007/s10278-017-9983-4
6 sg:pub.10.1007/s10549-006-9380-z
7 sg:pub.10.1007/s11547-015-0597-y
8 sg:pub.10.1007/s12149-007-0104-1
9 sg:pub.10.1007/s13748-019-00203-0
10 sg:pub.10.1038/s41598-020-63821-y
11 sg:pub.10.1186/s12859-020-03647-7
12 schema:datePublished 2021-11-14
13 schema:datePublishedReg 2021-11-14
14 schema:description BackgroundThe whole brain is often covered in [18F]Fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) in oncology patients, but the covered brain abnormality is typically screened by visual interpretation without quantitative analysis in clinical practice. In this study, we aimed to develop a fully automated quantitative interpretation pipeline of brain volume from an oncology PET image.MethodWe retrospectively collected 500 oncologic [18F]FDG-PET scans for training and validation of the automated brain extractor. We trained the model for extracting brain volume with two manually drawn bounding boxes on maximal intensity projection images. ResNet-50, a 2-D convolutional neural network (CNN), was used for the model training. The brain volume was automatically extracted using the CNN model and spatially normalized. For validation of the trained model and an application of this automated analytic method, we enrolled 24 subjects with small cell lung cancer (SCLC) and performed voxel-wise two-sample T test for automatic detection of metastatic lesions.ResultThe deep learning-based brain extractor successfully identified the existence of whole-brain volume, with an accuracy of 98% for the validation set. The performance of extracting the brain measured by the intersection-over-union of 3-D bounding boxes was 72.9 ± 12.5% for the validation set. As an example of the application to automatically identify brain abnormality, this approach successfully identified the metastatic lesions in three of the four cases of SCLC patients with brain metastasis.ConclusionBased on the deep learning-based model, extraction of the brain volume from whole-body PET was successfully performed. We suggest this fully automated approach could be used for the quantitative analysis of brain metabolic patterns to identify abnormalities during clinical interpretation of oncologic PET studies.
15 schema:genre article
16 schema:isAccessibleForFree true
17 schema:isPartOf N5168b8278fea45e788a406836022a83d
18 N7fb1d05ea9ff461da56d134932e96600
19 sg:journal.1051885
20 schema:keywords CNN model
21 FDG-PET imaging
22 MethodWe
23 PET
24 PET images
25 PET scans
26 PET studies
27 ResNet-50
28 SCLC patients
29 Union
30 abnormalities
31 accuracy
32 analysis
33 analytic methods
34 applications
35 approach
36 automatic detection
37 bounding boxes
38 box
39 brain
40 brain abnormalities
41 brain extraction
42 brain metabolic patterns
43 brain metastases
44 brain volume
45 cancer
46 cases
47 cell lung cancer
48 clinical interpretation
49 clinical practice
50 convolutional neural network
51 deep learning-based model
52 detection
53 emission tomography
54 example
55 existence
56 extraction
57 extractor
58 identification
59 images
60 imaging
61 interpretation
62 interpretation pipeline
63 intersection
64 learning-based models
65 lesions
66 lung cancer
67 mapping
68 maximal intensity projection images
69 metabolic patterns
70 metastasis
71 metastatic lesions
72 method
73 model
74 model training
75 network
76 neural network
77 oncology patients
78 parametric mapping
79 patients
80 patterns
81 performance
82 pipeline
83 positron emission tomography
84 practice
85 projection images
86 quantitative analysis
87 scans
88 set
89 small cell lung cancer
90 statistical parametric mapping
91 study
92 subjects
93 t-test
94 test
95 tomography
96 training
97 two-sample t-test
98 validation
99 validation set
100 visual interpretation
101 volume
102 whole brain
103 whole brain volume
104 whole-body FDG-PET imaging
105 whole-body PET
106 schema:name Fully automated identification of brain abnormality from whole-body FDG-PET imaging using deep learning-based brain extraction and statistical parametric mapping
107 schema:pagination 79
108 schema:productId N2c5158d22387411aa3e2789902e2a33a
109 Nc33ae292a8204eb2ac5c3777e8e842c9
110 Nd161acfc1c1c46a387f696feb735f216
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142584462
112 https://doi.org/10.1186/s40658-021-00424-0
113 schema:sdDatePublished 2022-10-01T06:49
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N7f7ec2409966438395e08fa5f95949cb
116 schema:url https://doi.org/10.1186/s40658-021-00424-0
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N05d56066a3624ec183c20a7ca25ba547 rdf:first sg:person.0761746266.86
121 rdf:rest N5aa98c37748b4ec38eee44c3eaae6427
122 N1af22c098cd04aacbfba0dc715e3747d rdf:first sg:person.0631257534.28
123 rdf:rest N1e26949a633541c89a7075af5adf4044
124 N1e26949a633541c89a7075af5adf4044 rdf:first sg:person.01343511335.32
125 rdf:rest Nfbc11b882a6741c18400503f027e8e2c
126 N2c5158d22387411aa3e2789902e2a33a schema:name dimensions_id
127 schema:value pub.1142584462
128 rdf:type schema:PropertyValue
129 N495d60c9c4374b428d647c9c5ef51085 rdf:first sg:person.010530452343.90
130 rdf:rest N1af22c098cd04aacbfba0dc715e3747d
131 N5168b8278fea45e788a406836022a83d schema:issueNumber 1
132 rdf:type schema:PublicationIssue
133 N5aa98c37748b4ec38eee44c3eaae6427 rdf:first sg:person.015617314175.88
134 rdf:rest rdf:nil
135 N7f7ec2409966438395e08fa5f95949cb schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 N7fb1d05ea9ff461da56d134932e96600 schema:volumeNumber 8
138 rdf:type schema:PublicationVolume
139 Nc33ae292a8204eb2ac5c3777e8e842c9 schema:name pubmed_id
140 schema:value 34778923
141 rdf:type schema:PropertyValue
142 Nd161acfc1c1c46a387f696feb735f216 schema:name doi
143 schema:value 10.1186/s40658-021-00424-0
144 rdf:type schema:PropertyValue
145 Nfbc11b882a6741c18400503f027e8e2c rdf:first sg:person.01333472502.31
146 rdf:rest N05d56066a3624ec183c20a7ca25ba547
147 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
148 schema:name Information and Computing Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
151 schema:name Artificial Intelligence and Image Processing
152 rdf:type schema:DefinedTerm
153 sg:journal.1051885 schema:issn 2197-7364
154 schema:name EJNMMI Physics
155 schema:publisher Springer Nature
156 rdf:type schema:Periodical
157 sg:person.010530452343.90 schema:affiliation grid-institutes:grid.31501.36
158 schema:familyName Whi
159 schema:givenName Wonseok
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530452343.90
161 rdf:type schema:Person
162 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.31501.36
163 schema:familyName Cheon
164 schema:givenName Gi Jeong
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
166 rdf:type schema:Person
167 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.31501.36
168 schema:familyName Paeng
169 schema:givenName Jin Chul
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
171 rdf:type schema:Person
172 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
173 schema:familyName Lee
174 schema:givenName Dong Soo
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
176 rdf:type schema:Person
177 sg:person.0631257534.28 schema:affiliation grid-institutes:grid.31501.36
178 schema:familyName Choi
179 schema:givenName Hongyoon
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28
181 rdf:type schema:Person
182 sg:person.0761746266.86 schema:affiliation grid-institutes:grid.31501.36
183 schema:familyName Kang
184 schema:givenName Keon Wook
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86
186 rdf:type schema:Person
187 sg:pub.10.1007/s00259-005-1767-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041268848
188 https://doi.org/10.1007/s00259-005-1767-2
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s10278-017-9983-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085753273
191 https://doi.org/10.1007/s10278-017-9983-4
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s10549-006-9380-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007995996
194 https://doi.org/10.1007/s10549-006-9380-z
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s11547-015-0597-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020135675
197 https://doi.org/10.1007/s11547-015-0597-y
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s12149-007-0104-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034373795
200 https://doi.org/10.1007/s12149-007-0104-1
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s13748-019-00203-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123579044
203 https://doi.org/10.1007/s13748-019-00203-0
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/s41598-020-63821-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1126821736
206 https://doi.org/10.1038/s41598-020-63821-y
207 rdf:type schema:CreativeWork
208 sg:pub.10.1186/s12859-020-03647-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130862486
209 https://doi.org/10.1186/s12859-020-03647-7
210 rdf:type schema:CreativeWork
211 grid-institutes:grid.31501.36 schema:alternateName Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
212 schema:name Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, 03080, Seoul, Republic of Korea
213 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...