Automatic delineation and quantification of pulmonary vascular obstruction index in patients with pulmonary embolism using Perfusion SPECT-CT: a simulation study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-07-05

AUTHORS

David Bourhis, Laura Wagner, Julien Rioult, Philippe Robin, Romain Le Pennec, Cécile Tromeur, Pierre Yves Salaün, Pierre Yves Le Roux

ABSTRACT

BackgroundIn patients with pulmonary embolism (PE), there is a growing interest in quantifying the pulmonary vascular obtruction index (PVOI), which may be an independent risk factor for PE recurrence. Perfusion SPECT/CT is a very attractive tool to provide an accurate quantification of the PVOI. However, there is currently no reliable method to automatically delineate and quantify it. The aim of this phantom study was to assess and compare 3 segmentation methods for PVOI quantification with perfusion SPECT/CT imaging.MethodsThree hundred ninety-six SPECT/CT scans, with various PE scenarios (n = 44), anterior to posterior perfusion gradients (n = 3), and lung volumes (n = 3) were simulated using Simind software. Three segmentation methods were assesssed: (1) using an intensity threshold expressed as a percentage of the maximal voxel value (MaxTh), (2) using a Z-score threshold (ZTh) after building a Z-score parametric lung map, and (3) using a relative difference threshold (RelDiffTh) after building a relative difference parametric map. Ninety randomly selected simulations were used to define the optimal threshold, and 306 simulations were used for the complete analysis. Spacial correlation between PE volumes from the phantom data and the delineated PE volumes was assessed by computing DICEPE indices. Bland-Altman statistics were used to calculate agreement for PVOI between the phantom data and the segmentation methods.ResultsMean DICEPE index was higher with the RelDiffTh method (0.85 ± 0.08), as compared with the MaxTh method (0.78 ± 0.16) and the ZTh method (0.67 ± 0.15). Using the RelDiffTh method, mean DICEPE index remained high (> 0.81) regardless of the perfusion gradient and the lung volumes. Using the RelDiffTh method, mean relative difference in PVOI was − 12%, and the limits of agreement were − 40% to 16%. Values were 3% (− 75% to 81%) for MaxTh method and 0% (− 120% to 120%) for ZTh method. Graphycal analysis of the Bland-Altman graph for the RelDiffTh method showed very close estimation of the PVOI for small and medium PE, and a trend toward an underestimation of large PE.ConclusionIn this phantom study, a delineation method based on a relative difference parametric map provided a good estimation of the PVOI, regardless of the extent of PE, the intensity of the anterior to posterior gradient, and the whole lung volumes. More... »

PAGES

49

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40658-021-00396-1

DOI

http://dx.doi.org/10.1186/s40658-021-00396-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1139368372

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34224005


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "EA3878 GETBO, Universit\u00e9 de Bretagne Occidentale, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.6289.5", 
          "name": [
            "Service de M\u00e9decine Nucl\u00e9aire, Centre Hospitalier R\u00e9gional Universitaire de Brest, Brest, France", 
            "EA3878 GETBO, Universit\u00e9 de Bretagne Occidentale, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bourhis", 
        "givenName": "David", 
        "id": "sg:person.0636567456.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636567456.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de M\u00e9decine Nucl\u00e9aire, Centre Hospitalier R\u00e9gional Universitaire de Brest, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.411766.3", 
          "name": [
            "Service de M\u00e9decine Nucl\u00e9aire, Centre Hospitalier R\u00e9gional Universitaire de Brest, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "Laura", 
        "id": "sg:person.012024637173.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012024637173.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de M\u00e9decine Nucl\u00e9aire, Centre Hospitalier R\u00e9gional Universitaire de Brest, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.411766.3", 
          "name": [
            "Service de M\u00e9decine Nucl\u00e9aire, Centre Hospitalier R\u00e9gional Universitaire de Brest, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rioult", 
        "givenName": "Julien", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "EA3878 GETBO, Universit\u00e9 de Bretagne Occidentale, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.6289.5", 
          "name": [
            "Service de M\u00e9decine Nucl\u00e9aire, Centre Hospitalier R\u00e9gional Universitaire de Brest, Brest, France", 
            "EA3878 GETBO, Universit\u00e9 de Bretagne Occidentale, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robin", 
        "givenName": "Philippe", 
        "id": "sg:person.01307140060.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307140060.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "EA3878 GETBO, Universit\u00e9 de Bretagne Occidentale, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.6289.5", 
          "name": [
            "Service de M\u00e9decine Nucl\u00e9aire, Centre Hospitalier R\u00e9gional Universitaire de Brest, Brest, France", 
            "EA3878 GETBO, Universit\u00e9 de Bretagne Occidentale, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Pennec", 
        "givenName": "Romain", 
        "id": "sg:person.015174542517.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015174542517.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de Pneumologie, Centre Hospitalier R\u00e9gional Universitaire de Brest, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.411766.3", 
          "name": [
            "EA3878 GETBO, Universit\u00e9 de Bretagne Occidentale, Brest, France", 
            "Service de Pneumologie, Centre Hospitalier R\u00e9gional Universitaire de Brest, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tromeur", 
        "givenName": "C\u00e9cile", 
        "id": "sg:person.0602144321.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602144321.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "EA3878 GETBO, Universit\u00e9 de Bretagne Occidentale, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.6289.5", 
          "name": [
            "Service de M\u00e9decine Nucl\u00e9aire, Centre Hospitalier R\u00e9gional Universitaire de Brest, Brest, France", 
            "EA3878 GETBO, Universit\u00e9 de Bretagne Occidentale, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sala\u00fcn", 
        "givenName": "Pierre Yves", 
        "id": "sg:person.01021766527.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021766527.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "EA3878 GETBO, Universit\u00e9 de Bretagne Occidentale, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.6289.5", 
          "name": [
            "Service de M\u00e9decine Nucl\u00e9aire, Centre Hospitalier R\u00e9gional Universitaire de Brest, Brest, France", 
            "EA3878 GETBO, Universit\u00e9 de Bretagne Occidentale, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Roux", 
        "givenName": "Pierre Yves", 
        "id": "sg:person.01156373352.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156373352.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-007-0286-8_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015882690", 
          "https://doi.org/10.1007/978-94-007-0286-8_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-017-1223-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099691674", 
          "https://doi.org/10.1007/s12149-017-1223-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13550-017-0332-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092156242", 
          "https://doi.org/10.1186/s13550-017-0332-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035817137", 
          "https://doi.org/10.1038/nmeth.2089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01268022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009542906", 
          "https://doi.org/10.1007/bf01268022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-014-2763-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052143696", 
          "https://doi.org/10.1007/s00259-014-2763-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-1079-6_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042188683", 
          "https://doi.org/10.1007/978-1-4615-1079-6_16"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-07-05", 
    "datePublishedReg": "2021-07-05", 
    "description": "BackgroundIn patients with pulmonary embolism (PE), there is a growing interest in quantifying the pulmonary vascular obtruction index (PVOI), which may be an independent risk factor for PE recurrence. Perfusion SPECT/CT is a very attractive tool to provide an accurate quantification of the PVOI. However, there is currently no reliable method to automatically delineate and quantify it. The aim of this phantom study was to assess and compare 3 segmentation methods for PVOI quantification with perfusion SPECT/CT imaging.MethodsThree hundred ninety-six SPECT/CT scans, with various PE scenarios (n = 44), anterior to posterior perfusion gradients (n = 3), and lung volumes (n = 3) were simulated using Simind software. Three segmentation methods were assesssed: (1) using an intensity threshold expressed as a percentage of the maximal voxel value (MaxTh), (2) using a Z-score threshold (ZTh) after building a Z-score parametric lung map, and (3) using a relative difference threshold (RelDiffTh) after building a relative difference parametric map. Ninety randomly selected simulations were used to define the optimal threshold, and 306 simulations were used for the complete analysis. Spacial correlation between PE volumes from the phantom data and the delineated PE volumes was assessed by computing DICEPE indices. Bland-Altman statistics were used to calculate agreement for PVOI between the phantom data and the segmentation methods.ResultsMean DICEPE index was higher with the RelDiffTh method (0.85 \u00b1 0.08), as compared with the MaxTh method (0.78 \u00b1 0.16) and the ZTh method (0.67 \u00b1 0.15). Using the RelDiffTh method, mean DICEPE index remained high (>\u20090.81) regardless of the perfusion gradient and the lung volumes. Using the RelDiffTh method, mean relative difference in PVOI was \u2212 12%, and the limits of agreement were \u2212 40% to 16%. Values were 3% (\u2212 75% to 81%) for MaxTh method and 0% (\u2212 120% to 120%) for ZTh method. Graphycal analysis of the Bland-Altman graph for the RelDiffTh method showed very close estimation of the PVOI for small and medium PE, and a trend toward an underestimation of large PE.ConclusionIn this phantom study, a delineation method based on a relative difference parametric map provided a good estimation of the PVOI, regardless of the extent of PE, the intensity of the anterior to posterior gradient, and the whole lung volumes.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40658-021-00396-1", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1051885", 
        "issn": [
          "2197-7364"
        ], 
        "name": "EJNMMI Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "pulmonary embolism", 
      "lung volume", 
      "z-score threshold", 
      "perfusion gradient", 
      "extent of PE", 
      "pulmonary vascular obstruction index", 
      "perfusion SPECT/CT", 
      "SPECT/CT scans", 
      "PE volume", 
      "vascular obstruction index", 
      "independent risk factor", 
      "large pulmonary embolism", 
      "SPECT/CT imaging", 
      "SPECT/CT", 
      "MethodsThree hundred ninety", 
      "whole lung volume", 
      "PE recurrence", 
      "Bland-Altman graphs", 
      "BackgroundIn patients", 
      "limits of agreement", 
      "obstruction index", 
      "Lung-MAP", 
      "risk factors", 
      "CT scan", 
      "Bland-Altman statistics", 
      "SPECT-CT", 
      "CT imaging", 
      "parametric maps", 
      "posterior gradient", 
      "embolism", 
      "patients", 
      "phantom study", 
      "index", 
      "recurrence", 
      "reliable method", 
      "ConclusionIn", 
      "anterior", 
      "CT", 
      "study", 
      "scans", 
      "volume", 
      "difference threshold", 
      "optimal threshold", 
      "threshold", 
      "imaging", 
      "aim", 
      "percentage", 
      "quantification", 
      "attractive tool", 
      "voxel values", 
      "factors", 
      "data", 
      "differences", 
      "relative difference", 
      "intensity threshold", 
      "phantom data", 
      "mean relative difference", 
      "segmentation method", 
      "correlation", 
      "automatic delineation", 
      "delineation", 
      "accurate quantification", 
      "analysis", 
      "method", 
      "extent", 
      "values", 
      "nineties", 
      "delineation methods", 
      "underestimation", 
      "trends", 
      "close estimation", 
      "statistics", 
      "tool", 
      "relative difference threshold", 
      "intensity", 
      "interest", 
      "gradient", 
      "spacial correlation", 
      "maps", 
      "software", 
      "agreement", 
      "graph", 
      "simulation study", 
      "better estimation", 
      "scenarios", 
      "estimation", 
      "simulations", 
      "limit", 
      "complete analysis"
    ], 
    "name": "Automatic delineation and quantification of pulmonary vascular obstruction index in patients with pulmonary embolism using Perfusion SPECT-CT: a simulation study", 
    "pagination": "49", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1139368372"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40658-021-00396-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34224005"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40658-021-00396-1", 
      "https://app.dimensions.ai/details/publication/pub.1139368372"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_895.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40658-021-00396-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40658-021-00396-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40658-021-00396-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40658-021-00396-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40658-021-00396-1'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      121 URIs      106 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40658-021-00396-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N555510ab6f5b4e7c890fe44a0b02c631
4 schema:citation sg:pub.10.1007/978-1-4615-1079-6_16
5 sg:pub.10.1007/978-94-007-0286-8_25
6 sg:pub.10.1007/bf01268022
7 sg:pub.10.1007/s00259-014-2763-1
8 sg:pub.10.1007/s12149-017-1223-y
9 sg:pub.10.1038/nmeth.2089
10 sg:pub.10.1186/s13550-017-0332-x
11 schema:datePublished 2021-07-05
12 schema:datePublishedReg 2021-07-05
13 schema:description BackgroundIn patients with pulmonary embolism (PE), there is a growing interest in quantifying the pulmonary vascular obtruction index (PVOI), which may be an independent risk factor for PE recurrence. Perfusion SPECT/CT is a very attractive tool to provide an accurate quantification of the PVOI. However, there is currently no reliable method to automatically delineate and quantify it. The aim of this phantom study was to assess and compare 3 segmentation methods for PVOI quantification with perfusion SPECT/CT imaging.MethodsThree hundred ninety-six SPECT/CT scans, with various PE scenarios (n = 44), anterior to posterior perfusion gradients (n = 3), and lung volumes (n = 3) were simulated using Simind software. Three segmentation methods were assesssed: (1) using an intensity threshold expressed as a percentage of the maximal voxel value (MaxTh), (2) using a Z-score threshold (ZTh) after building a Z-score parametric lung map, and (3) using a relative difference threshold (RelDiffTh) after building a relative difference parametric map. Ninety randomly selected simulations were used to define the optimal threshold, and 306 simulations were used for the complete analysis. Spacial correlation between PE volumes from the phantom data and the delineated PE volumes was assessed by computing DICEPE indices. Bland-Altman statistics were used to calculate agreement for PVOI between the phantom data and the segmentation methods.ResultsMean DICEPE index was higher with the RelDiffTh method (0.85 ± 0.08), as compared with the MaxTh method (0.78 ± 0.16) and the ZTh method (0.67 ± 0.15). Using the RelDiffTh method, mean DICEPE index remained high (> 0.81) regardless of the perfusion gradient and the lung volumes. Using the RelDiffTh method, mean relative difference in PVOI was − 12%, and the limits of agreement were − 40% to 16%. Values were 3% (− 75% to 81%) for MaxTh method and 0% (− 120% to 120%) for ZTh method. Graphycal analysis of the Bland-Altman graph for the RelDiffTh method showed very close estimation of the PVOI for small and medium PE, and a trend toward an underestimation of large PE.ConclusionIn this phantom study, a delineation method based on a relative difference parametric map provided a good estimation of the PVOI, regardless of the extent of PE, the intensity of the anterior to posterior gradient, and the whole lung volumes.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N2e3d84073b47426d95e2d3348d910fe4
17 Nb26076ecdfa843859f952d50f291bd1b
18 sg:journal.1051885
19 schema:keywords BackgroundIn patients
20 Bland-Altman graphs
21 Bland-Altman statistics
22 CT
23 CT imaging
24 CT scan
25 ConclusionIn
26 Lung-MAP
27 MethodsThree hundred ninety
28 PE recurrence
29 PE volume
30 SPECT-CT
31 SPECT/CT
32 SPECT/CT imaging
33 SPECT/CT scans
34 accurate quantification
35 agreement
36 aim
37 analysis
38 anterior
39 attractive tool
40 automatic delineation
41 better estimation
42 close estimation
43 complete analysis
44 correlation
45 data
46 delineation
47 delineation methods
48 difference threshold
49 differences
50 embolism
51 estimation
52 extent
53 extent of PE
54 factors
55 gradient
56 graph
57 imaging
58 independent risk factor
59 index
60 intensity
61 intensity threshold
62 interest
63 large pulmonary embolism
64 limit
65 limits of agreement
66 lung volume
67 maps
68 mean relative difference
69 method
70 nineties
71 obstruction index
72 optimal threshold
73 parametric maps
74 patients
75 percentage
76 perfusion SPECT/CT
77 perfusion gradient
78 phantom data
79 phantom study
80 posterior gradient
81 pulmonary embolism
82 pulmonary vascular obstruction index
83 quantification
84 recurrence
85 relative difference
86 relative difference threshold
87 reliable method
88 risk factors
89 scans
90 scenarios
91 segmentation method
92 simulation study
93 simulations
94 software
95 spacial correlation
96 statistics
97 study
98 threshold
99 tool
100 trends
101 underestimation
102 values
103 vascular obstruction index
104 volume
105 voxel values
106 whole lung volume
107 z-score threshold
108 schema:name Automatic delineation and quantification of pulmonary vascular obstruction index in patients with pulmonary embolism using Perfusion SPECT-CT: a simulation study
109 schema:pagination 49
110 schema:productId N764b937f3a134e2e957f2c0599e4450a
111 N815bb317a06748f5bea28fb52f5ca542
112 Nbdd3b25c197648f0af0733188f22cde7
113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139368372
114 https://doi.org/10.1186/s40658-021-00396-1
115 schema:sdDatePublished 2022-08-04T17:11
116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
117 schema:sdPublisher N276e2cf8490c4183ad8369f9e325c79e
118 schema:url https://doi.org/10.1186/s40658-021-00396-1
119 sgo:license sg:explorer/license/
120 sgo:sdDataset articles
121 rdf:type schema:ScholarlyArticle
122 N1e5135af0fd942cea2b9816d108f9c79 rdf:first Nc17d2d4c305d4957b810c8b7088d63a2
123 rdf:rest N7879cda33c5f4f84b458a24a5357a940
124 N276e2cf8490c4183ad8369f9e325c79e schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 N2e3d84073b47426d95e2d3348d910fe4 schema:issueNumber 1
127 rdf:type schema:PublicationIssue
128 N555510ab6f5b4e7c890fe44a0b02c631 rdf:first sg:person.0636567456.08
129 rdf:rest N57b468e3bee640f19781dc8b59aba080
130 N57b468e3bee640f19781dc8b59aba080 rdf:first sg:person.012024637173.21
131 rdf:rest N1e5135af0fd942cea2b9816d108f9c79
132 N764b937f3a134e2e957f2c0599e4450a schema:name pubmed_id
133 schema:value 34224005
134 rdf:type schema:PropertyValue
135 N7879cda33c5f4f84b458a24a5357a940 rdf:first sg:person.01307140060.86
136 rdf:rest Nef00921d9eec454090e063821e63c84d
137 N815bb317a06748f5bea28fb52f5ca542 schema:name dimensions_id
138 schema:value pub.1139368372
139 rdf:type schema:PropertyValue
140 N9af87bb9a7cf4275bec65ec111916dff rdf:first sg:person.01156373352.82
141 rdf:rest rdf:nil
142 Nad4cec7bbad14c4b9c7ba79ddaadf608 rdf:first sg:person.01021766527.49
143 rdf:rest N9af87bb9a7cf4275bec65ec111916dff
144 Nb26076ecdfa843859f952d50f291bd1b schema:volumeNumber 8
145 rdf:type schema:PublicationVolume
146 Nbdd3b25c197648f0af0733188f22cde7 schema:name doi
147 schema:value 10.1186/s40658-021-00396-1
148 rdf:type schema:PropertyValue
149 Nc17d2d4c305d4957b810c8b7088d63a2 schema:affiliation grid-institutes:grid.411766.3
150 schema:familyName Rioult
151 schema:givenName Julien
152 rdf:type schema:Person
153 Nedc855c043844f2cb1d3672522996e6d rdf:first sg:person.0602144321.06
154 rdf:rest Nad4cec7bbad14c4b9c7ba79ddaadf608
155 Nef00921d9eec454090e063821e63c84d rdf:first sg:person.015174542517.33
156 rdf:rest Nedc855c043844f2cb1d3672522996e6d
157 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
158 schema:name Information and Computing Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
161 schema:name Artificial Intelligence and Image Processing
162 rdf:type schema:DefinedTerm
163 sg:journal.1051885 schema:issn 2197-7364
164 schema:name EJNMMI Physics
165 schema:publisher Springer Nature
166 rdf:type schema:Periodical
167 sg:person.01021766527.49 schema:affiliation grid-institutes:grid.6289.5
168 schema:familyName Salaün
169 schema:givenName Pierre Yves
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021766527.49
171 rdf:type schema:Person
172 sg:person.01156373352.82 schema:affiliation grid-institutes:grid.6289.5
173 schema:familyName Le Roux
174 schema:givenName Pierre Yves
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156373352.82
176 rdf:type schema:Person
177 sg:person.012024637173.21 schema:affiliation grid-institutes:grid.411766.3
178 schema:familyName Wagner
179 schema:givenName Laura
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012024637173.21
181 rdf:type schema:Person
182 sg:person.01307140060.86 schema:affiliation grid-institutes:grid.6289.5
183 schema:familyName Robin
184 schema:givenName Philippe
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307140060.86
186 rdf:type schema:Person
187 sg:person.015174542517.33 schema:affiliation grid-institutes:grid.6289.5
188 schema:familyName Le Pennec
189 schema:givenName Romain
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015174542517.33
191 rdf:type schema:Person
192 sg:person.0602144321.06 schema:affiliation grid-institutes:grid.411766.3
193 schema:familyName Tromeur
194 schema:givenName Cécile
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602144321.06
196 rdf:type schema:Person
197 sg:person.0636567456.08 schema:affiliation grid-institutes:grid.6289.5
198 schema:familyName Bourhis
199 schema:givenName David
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636567456.08
201 rdf:type schema:Person
202 sg:pub.10.1007/978-1-4615-1079-6_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042188683
203 https://doi.org/10.1007/978-1-4615-1079-6_16
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/978-94-007-0286-8_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015882690
206 https://doi.org/10.1007/978-94-007-0286-8_25
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/bf01268022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009542906
209 https://doi.org/10.1007/bf01268022
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s00259-014-2763-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052143696
212 https://doi.org/10.1007/s00259-014-2763-1
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s12149-017-1223-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1099691674
215 https://doi.org/10.1007/s12149-017-1223-y
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/nmeth.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035817137
218 https://doi.org/10.1038/nmeth.2089
219 rdf:type schema:CreativeWork
220 sg:pub.10.1186/s13550-017-0332-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092156242
221 https://doi.org/10.1186/s13550-017-0332-x
222 rdf:type schema:CreativeWork
223 grid-institutes:grid.411766.3 schema:alternateName Service de Médecine Nucléaire, Centre Hospitalier Régional Universitaire de Brest, Brest, France
224 Service de Pneumologie, Centre Hospitalier Régional Universitaire de Brest, Brest, France
225 schema:name EA3878 GETBO, Université de Bretagne Occidentale, Brest, France
226 Service de Médecine Nucléaire, Centre Hospitalier Régional Universitaire de Brest, Brest, France
227 Service de Pneumologie, Centre Hospitalier Régional Universitaire de Brest, Brest, France
228 rdf:type schema:Organization
229 grid-institutes:grid.6289.5 schema:alternateName EA3878 GETBO, Université de Bretagne Occidentale, Brest, France
230 schema:name EA3878 GETBO, Université de Bretagne Occidentale, Brest, France
231 Service de Médecine Nucléaire, Centre Hospitalier Régional Universitaire de Brest, Brest, France
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...