From a PMT-based to a SiPM-based PET system: a study to define matched acquisition/reconstruction parameters and NEMA performance of the ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-09-03

AUTHORS

Thomas Carlier, Ludovic Ferrer, Maurizio Conti, Caroline Bodet-Milin, Caroline Rousseau, Yanic Bercier, Bernard Bendriem, Françoise Kraeber-Bodéré

ABSTRACT

BackgroundThe purpose of this work was to propose an approach based on noise measurement to adapt present clinical acquisition and reconstruction parameters adapted to a PMT-based system (Biograph mCT) to a SiPM-based system (Biograph Vision 450) sharing identical geometrical properties. The NEMA performance (NEMA) of the recently released Biograph Vision 450 PET/CT (Vision) was also derived.MethodsAll measurements were conducted on Vision and Biograph mCT with TrueV (mCT). A full NEMA-based performance was derived for Vision only. The adaptation of acquisition and reconstruction parameters from mCT to Vision was done using the NEMA image quality phantom. The noise level reached using mCT was set as the reference value for six different numbers of net true coincidences. The noise level computed using Vision was matched to the reference noise level (within 0.01%) using a different reconstruction set-up to determine the potential reduction of count numbers for the same noise level.ResultsVision sensitivity was 9.1 kcps/MBq for a timing resolution of 213 ps at 5.3 kBq/mL. The NEMA-based CR for the 10-mm sphere was better than 75% regardless the reconstruction set-up studied. The mCT reference noise properties could be achieved using Vision with a scan time reduction (STR) of 1.34 with four iterations and a 440 × 440 matrix size (or STR = 1.89 with a 220 × 220 matrix size) together with a 3D CR improvement of 53% for the 10-mm sphere (24% using 220 × 220).ConclusionThe Vision exhibited improved NEMA performances compared to mCT. Using the proposed approach, the time acquisition could be divided by almost two, while keeping the same noise properties as that of mCT with a marked improvement of contrast recovery. More... »

PAGES

55

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40658-020-00323-w

DOI

http://dx.doi.org/10.1186/s40658-020-00323-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1130548758

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32880792


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Nantes, CNRS, INSERM, CRCINA, Nantes, France", 
          "id": "http://www.grid.ac/institutes/grid.4817.a", 
          "name": [
            "Nuclear Medicine Department, University Hospital of Nantes, Place Alexis Ricordeau, Nantes, France", 
            "Universit\u00e9 de Nantes, CNRS, INSERM, CRCINA, Nantes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carlier", 
        "givenName": "Thomas", 
        "id": "sg:person.01200407127.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200407127.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Medicine Department, ICO, Boulevard Jacques Monod, Saint-Herblain, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Universit\u00e9 de Nantes, CNRS, INSERM, CRCINA, Nantes, France", 
            "Nuclear Medicine Department, ICO, Boulevard Jacques Monod, Saint-Herblain, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferrer", 
        "givenName": "Ludovic", 
        "id": "sg:person.01112242163.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112242163.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Medical Solutions USA, Inc., Knoxville, TN, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens Medical Solutions USA, Inc., Knoxville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conti", 
        "givenName": "Maurizio", 
        "id": "sg:person.01300356305.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300356305.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Nantes, CNRS, INSERM, CRCINA, Nantes, France", 
          "id": "http://www.grid.ac/institutes/grid.4817.a", 
          "name": [
            "Nuclear Medicine Department, University Hospital of Nantes, Place Alexis Ricordeau, Nantes, France", 
            "Universit\u00e9 de Nantes, CNRS, INSERM, CRCINA, Nantes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bodet-Milin", 
        "givenName": "Caroline", 
        "id": "sg:person.01212260416.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212260416.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Medicine Department, ICO, Boulevard Jacques Monod, Saint-Herblain, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Universit\u00e9 de Nantes, CNRS, INSERM, CRCINA, Nantes, France", 
            "Nuclear Medicine Department, ICO, Boulevard Jacques Monod, Saint-Herblain, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseau", 
        "givenName": "Caroline", 
        "id": "sg:person.01240530667.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240530667.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Medical Solutions USA, Inc., Knoxville, TN, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens Medical Solutions USA, Inc., Knoxville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bercier", 
        "givenName": "Yanic", 
        "id": "sg:person.012243355247.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012243355247.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Medical Solutions USA, Inc., Knoxville, TN, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens Medical Solutions USA, Inc., Knoxville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bendriem", 
        "givenName": "Bernard", 
        "id": "sg:person.0712707225.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712707225.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Nantes, CNRS, INSERM, CRCINA, Nantes, France", 
          "id": "http://www.grid.ac/institutes/grid.4817.a", 
          "name": [
            "Nuclear Medicine Department, University Hospital of Nantes, Place Alexis Ricordeau, Nantes, France", 
            "Universit\u00e9 de Nantes, CNRS, INSERM, CRCINA, Nantes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kraeber-Bod\u00e9r\u00e9", 
        "givenName": "Fran\u00e7oise", 
        "id": "sg:person.0653324404.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653324404.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10439-011-0266-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052591391", 
          "https://doi.org/10.1007/s10439-011-0266-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40658-020-0283-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125396199", 
          "https://doi.org/10.1186/s40658-020-0283-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1711-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034695657", 
          "https://doi.org/10.1007/s00259-010-1711-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40658-019-0269-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123836752", 
          "https://doi.org/10.1186/s40658-019-0269-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-09-03", 
    "datePublishedReg": "2020-09-03", 
    "description": "BackgroundThe purpose of this work was to propose an approach based on noise measurement to adapt present clinical acquisition and reconstruction parameters adapted to a PMT-based system (Biograph mCT) to a SiPM-based system (Biograph Vision 450) sharing identical geometrical properties. The NEMA performance (NEMA) of the recently released Biograph Vision 450 PET/CT (Vision) was also derived.MethodsAll measurements were conducted on Vision and Biograph mCT with TrueV (mCT). A full NEMA-based performance was derived for Vision only. The adaptation of acquisition and reconstruction parameters from mCT to Vision was done using the NEMA image quality phantom. The noise level reached using mCT was set as the reference value for six different numbers of net true coincidences. The noise level computed using Vision was matched to the reference noise level (within 0.01%) using a different reconstruction set-up to determine the potential reduction of count numbers for the same noise level.ResultsVision sensitivity was 9.1\u2009kcps/MBq for a timing resolution of 213\u2009ps at 5.3\u2009kBq/mL. The NEMA-based CR for the 10-mm sphere was better than 75% regardless the reconstruction set-up studied. The mCT reference noise properties could be achieved using Vision with a scan time reduction (STR) of 1.34 with four iterations and a 440 \u00d7 440 matrix size (or STR = 1.89 with a 220 \u00d7 220 matrix size) together with a 3D CR improvement of 53% for the 10-mm sphere (24% using 220 \u00d7 220).ConclusionThe Vision exhibited improved NEMA performances compared to mCT. Using the proposed approach, the time acquisition could be divided by almost two, while keeping the same noise properties as that of mCT with a marked improvement of contrast recovery.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40658-020-00323-w", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1051885", 
        "issn": [
          "2197-7364"
        ], 
        "name": "EJNMMI Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "noise level", 
      "scan time reduction", 
      "noise properties", 
      "noise measurements", 
      "kcps/MBq", 
      "reference noise level", 
      "reconstruction parameters", 
      "time reduction", 
      "time acquisition", 
      "same noise level", 
      "geometrical properties", 
      "performance", 
      "properties", 
      "NEMA image quality phantom", 
      "potential reduction", 
      "timing resolution", 
      "parameters", 
      "PET/CT", 
      "image quality phantom", 
      "measurements", 
      "different numbers", 
      "matrix size", 
      "contrast recovery", 
      "system", 
      "count number", 
      "CR improvement", 
      "reference values", 
      "marked improvement", 
      "PET system", 
      "different reconstructions", 
      "SiPM-based system", 
      "nema", 
      "phantom", 
      "reduction", 
      "clinical acquisitions", 
      "Biograph mCT", 
      "improvement", 
      "PMT", 
      "vision", 
      "MCT", 
      "Cr", 
      "sphere", 
      "approach", 
      "work", 
      "reconstruction", 
      "resolution", 
      "kBq/", 
      "size", 
      "levels", 
      "PS", 
      "iteration", 
      "CT", 
      "MBq", 
      "recovery", 
      "acquisition", 
      "values", 
      "number", 
      "sensitivity", 
      "purpose", 
      "study", 
      "true coincidences", 
      "TrueV", 
      "coincidence", 
      "adaptation"
    ], 
    "name": "From a PMT-based to a SiPM-based PET system: a study to define matched acquisition/reconstruction parameters and NEMA performance of the Biograph Vision 450", 
    "pagination": "55", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1130548758"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40658-020-00323-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32880792"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40658-020-00323-w", 
      "https://app.dimensions.ai/details/publication/pub.1130548758"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_832.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40658-020-00323-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40658-020-00323-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40658-020-00323-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40658-020-00323-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40658-020-00323-w'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      93 URIs      81 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40658-020-00323-w schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4d95b5866a0746c8bfec0a76a970a715
4 schema:citation sg:pub.10.1007/s00259-010-1711-y
5 sg:pub.10.1007/s10439-011-0266-9
6 sg:pub.10.1186/s40658-019-0269-4
7 sg:pub.10.1186/s40658-020-0283-6
8 schema:datePublished 2020-09-03
9 schema:datePublishedReg 2020-09-03
10 schema:description BackgroundThe purpose of this work was to propose an approach based on noise measurement to adapt present clinical acquisition and reconstruction parameters adapted to a PMT-based system (Biograph mCT) to a SiPM-based system (Biograph Vision 450) sharing identical geometrical properties. The NEMA performance (NEMA) of the recently released Biograph Vision 450 PET/CT (Vision) was also derived.MethodsAll measurements were conducted on Vision and Biograph mCT with TrueV (mCT). A full NEMA-based performance was derived for Vision only. The adaptation of acquisition and reconstruction parameters from mCT to Vision was done using the NEMA image quality phantom. The noise level reached using mCT was set as the reference value for six different numbers of net true coincidences. The noise level computed using Vision was matched to the reference noise level (within 0.01%) using a different reconstruction set-up to determine the potential reduction of count numbers for the same noise level.ResultsVision sensitivity was 9.1 kcps/MBq for a timing resolution of 213 ps at 5.3 kBq/mL. The NEMA-based CR for the 10-mm sphere was better than 75% regardless the reconstruction set-up studied. The mCT reference noise properties could be achieved using Vision with a scan time reduction (STR) of 1.34 with four iterations and a 440 × 440 matrix size (or STR = 1.89 with a 220 × 220 matrix size) together with a 3D CR improvement of 53% for the 10-mm sphere (24% using 220 × 220).ConclusionThe Vision exhibited improved NEMA performances compared to mCT. Using the proposed approach, the time acquisition could be divided by almost two, while keeping the same noise properties as that of mCT with a marked improvement of contrast recovery.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N41a84642e8a64095894a527dde3a32d0
14 N7d9c3daebd4e4d0887f288d4eb82af35
15 sg:journal.1051885
16 schema:keywords Biograph mCT
17 CR improvement
18 CT
19 Cr
20 MBq
21 MCT
22 NEMA image quality phantom
23 PET system
24 PET/CT
25 PMT
26 PS
27 SiPM-based system
28 TrueV
29 acquisition
30 adaptation
31 approach
32 clinical acquisitions
33 coincidence
34 contrast recovery
35 count number
36 different numbers
37 different reconstructions
38 geometrical properties
39 image quality phantom
40 improvement
41 iteration
42 kBq/
43 kcps/MBq
44 levels
45 marked improvement
46 matrix size
47 measurements
48 nema
49 noise level
50 noise measurements
51 noise properties
52 number
53 parameters
54 performance
55 phantom
56 potential reduction
57 properties
58 purpose
59 reconstruction
60 reconstruction parameters
61 recovery
62 reduction
63 reference noise level
64 reference values
65 resolution
66 same noise level
67 scan time reduction
68 sensitivity
69 size
70 sphere
71 study
72 system
73 time acquisition
74 time reduction
75 timing resolution
76 true coincidences
77 values
78 vision
79 work
80 schema:name From a PMT-based to a SiPM-based PET system: a study to define matched acquisition/reconstruction parameters and NEMA performance of the Biograph Vision 450
81 schema:pagination 55
82 schema:productId N3f77cd24954a4adbade155c6cb56a1ec
83 N7d1101ba074a4781bd3c3dfd71985920
84 Nbd89450972d341d283076305eb7b5422
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130548758
86 https://doi.org/10.1186/s40658-020-00323-w
87 schema:sdDatePublished 2022-12-01T06:40
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N61e28f2a37c944818cdbac24a19d56e7
90 schema:url https://doi.org/10.1186/s40658-020-00323-w
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N3f77cd24954a4adbade155c6cb56a1ec schema:name doi
95 schema:value 10.1186/s40658-020-00323-w
96 rdf:type schema:PropertyValue
97 N41a84642e8a64095894a527dde3a32d0 schema:volumeNumber 7
98 rdf:type schema:PublicationVolume
99 N4bc2da5982a742228441fc1bf56e7f7f rdf:first sg:person.01240530667.47
100 rdf:rest Nbcdc8f9fb357474aa28b75254cbde262
101 N4d95b5866a0746c8bfec0a76a970a715 rdf:first sg:person.01200407127.59
102 rdf:rest Nea903d9a499e421fa43dffff39b7faaf
103 N52f547ec27d04018862f31f689d18542 rdf:first sg:person.01212260416.00
104 rdf:rest N4bc2da5982a742228441fc1bf56e7f7f
105 N54a72d794e4c472a97977493d6ad7de0 rdf:first sg:person.01300356305.23
106 rdf:rest N52f547ec27d04018862f31f689d18542
107 N61e28f2a37c944818cdbac24a19d56e7 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N7d1101ba074a4781bd3c3dfd71985920 schema:name pubmed_id
110 schema:value 32880792
111 rdf:type schema:PropertyValue
112 N7d9c3daebd4e4d0887f288d4eb82af35 schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 Nb63d3ff9b0804e21a0e5c0d43d31e849 rdf:first sg:person.0712707225.41
115 rdf:rest Nc7e3097463c34bda8625ae0e3839cdaa
116 Nbcdc8f9fb357474aa28b75254cbde262 rdf:first sg:person.012243355247.09
117 rdf:rest Nb63d3ff9b0804e21a0e5c0d43d31e849
118 Nbd89450972d341d283076305eb7b5422 schema:name dimensions_id
119 schema:value pub.1130548758
120 rdf:type schema:PropertyValue
121 Nc7e3097463c34bda8625ae0e3839cdaa rdf:first sg:person.0653324404.03
122 rdf:rest rdf:nil
123 Nea903d9a499e421fa43dffff39b7faaf rdf:first sg:person.01112242163.57
124 rdf:rest N54a72d794e4c472a97977493d6ad7de0
125 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
126 schema:name Information and Computing Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
129 schema:name Artificial Intelligence and Image Processing
130 rdf:type schema:DefinedTerm
131 sg:journal.1051885 schema:issn 2197-7364
132 schema:name EJNMMI Physics
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.01112242163.57 schema:affiliation grid-institutes:None
136 schema:familyName Ferrer
137 schema:givenName Ludovic
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112242163.57
139 rdf:type schema:Person
140 sg:person.01200407127.59 schema:affiliation grid-institutes:grid.4817.a
141 schema:familyName Carlier
142 schema:givenName Thomas
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200407127.59
144 rdf:type schema:Person
145 sg:person.01212260416.00 schema:affiliation grid-institutes:grid.4817.a
146 schema:familyName Bodet-Milin
147 schema:givenName Caroline
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212260416.00
149 rdf:type schema:Person
150 sg:person.012243355247.09 schema:affiliation grid-institutes:None
151 schema:familyName Bercier
152 schema:givenName Yanic
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012243355247.09
154 rdf:type schema:Person
155 sg:person.01240530667.47 schema:affiliation grid-institutes:None
156 schema:familyName Rousseau
157 schema:givenName Caroline
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240530667.47
159 rdf:type schema:Person
160 sg:person.01300356305.23 schema:affiliation grid-institutes:None
161 schema:familyName Conti
162 schema:givenName Maurizio
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300356305.23
164 rdf:type schema:Person
165 sg:person.0653324404.03 schema:affiliation grid-institutes:grid.4817.a
166 schema:familyName Kraeber-Bodéré
167 schema:givenName Françoise
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653324404.03
169 rdf:type schema:Person
170 sg:person.0712707225.41 schema:affiliation grid-institutes:None
171 schema:familyName Bendriem
172 schema:givenName Bernard
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712707225.41
174 rdf:type schema:Person
175 sg:pub.10.1007/s00259-010-1711-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034695657
176 https://doi.org/10.1007/s00259-010-1711-y
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s10439-011-0266-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052591391
179 https://doi.org/10.1007/s10439-011-0266-9
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/s40658-019-0269-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123836752
182 https://doi.org/10.1186/s40658-019-0269-4
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/s40658-020-0283-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125396199
185 https://doi.org/10.1186/s40658-020-0283-6
186 rdf:type schema:CreativeWork
187 grid-institutes:None schema:alternateName Nuclear Medicine Department, ICO, Boulevard Jacques Monod, Saint-Herblain, France
188 Siemens Medical Solutions USA, Inc., Knoxville, TN, USA
189 schema:name Nuclear Medicine Department, ICO, Boulevard Jacques Monod, Saint-Herblain, France
190 Siemens Medical Solutions USA, Inc., Knoxville, TN, USA
191 Université de Nantes, CNRS, INSERM, CRCINA, Nantes, France
192 rdf:type schema:Organization
193 grid-institutes:grid.4817.a schema:alternateName Université de Nantes, CNRS, INSERM, CRCINA, Nantes, France
194 schema:name Nuclear Medicine Department, University Hospital of Nantes, Place Alexis Ricordeau, Nantes, France
195 Université de Nantes, CNRS, INSERM, CRCINA, Nantes, France
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...