Feasibility of PET/CT system performance harmonisation for quantitative multicentre 89Zr studies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11-21

AUTHORS

Andres Kaalep, Marc Huisman, Terez Sera, Danielle Vugts, Ronald Boellaard

ABSTRACT

PurposeThe aim of this study was to investigate the variability in quantitative performance and feasibility of quantitative harmonisation in 89Zr PET/CT imaging.MethodsEight EANM EARL-accredited (Kaalep A et al., Eur J Nucl Med Mol Imaging 45:412–22, 2018) PET/CT systems were investigated using phantom acquisitions of uniform and NEMA NU2-2007 body phantoms. The phantoms were filled according to EANM EARL guidelines for [18F]FDG, but [18F]FDG solution was replaced by a 89Zr calibration mixture. For each system, standard uptake value (SUV) accuracy and recovery coefficients (RC) using SUVmean, SUVmax and SUVpeak metrics were determined.ResultsAll eight investigated systems demonstrated similarly shaped RC curves, and five of them exhibited closely aligning recoveries when SUV bias correction was applied. From the evaluated metrics, SUVpeak was found to be least sensitive to noise and reconstruction differences among different systems.ConclusionsHarmonisation of PET/CT scanners for quantitative 89Zr studies is feasible when proper scanner-dose calibrator cross-calibration and harmonised image reconstruction procedures are followed. An accreditation programme for PET/CT scanners would facilitate multicentre 89Zr quantitative studies. More... »

PAGES

26

References to SciGraph publications

  • 2014-12-02. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2017-06-16. EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2017-12-01. EANM/EARL FDG-PET/CT accreditation - summary results from the first 200 accredited imaging systems in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2016-05-23. Physics of pure and non-pure positron emitters for PET: a review and a discussion in EJNMMI PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40658-018-0226-7

    DOI

    http://dx.doi.org/10.1186/s40658-018-0226-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106216905

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30460577


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Medical Technology, North Estonia Medical Centre Foundation, J. Sutiste Str 19, 13419, Tallinn, Estonia", 
              "id": "http://www.grid.ac/institutes/grid.454953.a", 
              "name": [
                "Department of Medical Technology, North Estonia Medical Centre Foundation, J. Sutiste Str 19, 13419, Tallinn, Estonia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaalep", 
            "givenName": "Andres", 
            "id": "sg:person.014305542415.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014305542415.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.16872.3a", 
              "name": [
                "Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huisman", 
            "givenName": "Marc", 
            "id": "sg:person.01006327107.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006327107.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "EANM Research Limited (EARL), Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.488256.5", 
              "name": [
                "Department of Nuclear Medicine, University of Szeged, Szeged, Hungary", 
                "EANM Research Limited (EARL), Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sera", 
            "givenName": "Terez", 
            "id": "sg:person.01047546553.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047546553.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.16872.3a", 
              "name": [
                "Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vugts", 
            "givenName": "Danielle", 
            "id": "sg:person.0665425270.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665425270.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4494.d", 
              "name": [
                "Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands", 
                "Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boellaard", 
            "givenName": "Ronald", 
            "id": "sg:person.01361420011.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00259-017-3740-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086069747", 
              "https://doi.org/10.1007/s00259-017-3740-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40658-016-0144-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036370547", 
              "https://doi.org/10.1186/s40658-016-0144-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2961-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008918527", 
              "https://doi.org/10.1007/s00259-014-2961-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-017-3853-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093093451", 
              "https://doi.org/10.1007/s00259-017-3853-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11-21", 
        "datePublishedReg": "2018-11-21", 
        "description": "PurposeThe aim of this study was to investigate the variability in quantitative performance and feasibility of quantitative harmonisation in 89Zr PET/CT imaging.MethodsEight EANM EARL-accredited (Kaalep A et al., Eur J Nucl Med Mol Imaging 45:412\u201322, 2018) PET/CT systems were investigated using phantom acquisitions of uniform and NEMA NU2-2007 body phantoms. The phantoms were filled according to EANM EARL guidelines for [18F]FDG, but [18F]FDG solution was replaced by a 89Zr calibration mixture. For each system, standard uptake value (SUV) accuracy and recovery coefficients (RC) using SUVmean, SUVmax and SUVpeak metrics were determined.ResultsAll eight investigated systems demonstrated similarly shaped RC curves, and five of them exhibited closely aligning recoveries when SUV bias correction was applied. From the evaluated metrics, SUVpeak was found to be least sensitive to noise and reconstruction differences among different systems.ConclusionsHarmonisation of PET/CT scanners for quantitative 89Zr studies is feasible when proper scanner-dose calibrator cross-calibration and harmonised image reconstruction procedures are followed. An accreditation programme for PET/CT scanners would facilitate multicentre 89Zr quantitative studies.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40658-018-0226-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6621942", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1051885", 
            "issn": [
              "2197-7364"
            ], 
            "name": "EJNMMI Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "reconstruction difference", 
          "PET/CT scanner", 
          "image reconstruction procedure", 
          "quantitative performance", 
          "PET/CT imaging", 
          "value accuracy", 
          "evaluated metrics", 
          "CT imaging", 
          "PET/CT system", 
          "system", 
          "phantom acquisitions", 
          "metrics", 
          "different systems", 
          "CT scanner", 
          "feasibility", 
          "CT system", 
          "accuracy", 
          "scanner", 
          "reconstruction procedure", 
          "accreditation program", 
          "aim", 
          "study", 
          "performance", 
          "imaging", 
          "acquisition", 
          "body phantom", 
          "phantom", 
          "guidelines", 
          "solution", 
          "SUVmean", 
          "SUVmax", 
          "SUVpeak", 
          "noise", 
          "quantitative study", 
          "harmonisation", 
          "recovery coefficient", 
          "eight", 
          "RC curves", 
          "recovery", 
          "bias correction", 
          "differences", 
          "procedure", 
          "program", 
          "variability", 
          "uniform", 
          "coefficient", 
          "curves", 
          "correction", 
          "calibrator", 
          "Earl", 
          "NEMA NU2", 
          "mixture", 
          "NU2", 
          "calibration mixtures"
        ], 
        "name": "Feasibility of PET/CT system performance harmonisation for quantitative multicentre 89Zr studies", 
        "pagination": "26", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106216905"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40658-018-0226-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30460577"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40658-018-0226-7", 
          "https://app.dimensions.ai/details/publication/pub.1106216905"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_767.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40658-018-0226-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40658-018-0226-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40658-018-0226-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40658-018-0226-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40658-018-0226-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    172 TRIPLES      22 PREDICATES      84 URIs      72 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40658-018-0226-7 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Ndebeb77d50404a2ab38244d46c927078
    4 schema:citation sg:pub.10.1007/s00259-014-2961-x
    5 sg:pub.10.1007/s00259-017-3740-2
    6 sg:pub.10.1007/s00259-017-3853-7
    7 sg:pub.10.1186/s40658-016-0144-5
    8 schema:datePublished 2018-11-21
    9 schema:datePublishedReg 2018-11-21
    10 schema:description PurposeThe aim of this study was to investigate the variability in quantitative performance and feasibility of quantitative harmonisation in 89Zr PET/CT imaging.MethodsEight EANM EARL-accredited (Kaalep A et al., Eur J Nucl Med Mol Imaging 45:412–22, 2018) PET/CT systems were investigated using phantom acquisitions of uniform and NEMA NU2-2007 body phantoms. The phantoms were filled according to EANM EARL guidelines for [18F]FDG, but [18F]FDG solution was replaced by a 89Zr calibration mixture. For each system, standard uptake value (SUV) accuracy and recovery coefficients (RC) using SUVmean, SUVmax and SUVpeak metrics were determined.ResultsAll eight investigated systems demonstrated similarly shaped RC curves, and five of them exhibited closely aligning recoveries when SUV bias correction was applied. From the evaluated metrics, SUVpeak was found to be least sensitive to noise and reconstruction differences among different systems.ConclusionsHarmonisation of PET/CT scanners for quantitative 89Zr studies is feasible when proper scanner-dose calibrator cross-calibration and harmonised image reconstruction procedures are followed. An accreditation programme for PET/CT scanners would facilitate multicentre 89Zr quantitative studies.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N3c0db48405b9456894b83bd8279bd51b
    15 Nc16347e9bbb2493792c5b90179d1127f
    16 sg:journal.1051885
    17 schema:keywords CT imaging
    18 CT scanner
    19 CT system
    20 Earl
    21 NEMA NU2
    22 NU2
    23 PET/CT imaging
    24 PET/CT scanner
    25 PET/CT system
    26 RC curves
    27 SUVmax
    28 SUVmean
    29 SUVpeak
    30 accreditation program
    31 accuracy
    32 acquisition
    33 aim
    34 bias correction
    35 body phantom
    36 calibration mixtures
    37 calibrator
    38 coefficient
    39 correction
    40 curves
    41 differences
    42 different systems
    43 eight
    44 evaluated metrics
    45 feasibility
    46 guidelines
    47 harmonisation
    48 image reconstruction procedure
    49 imaging
    50 metrics
    51 mixture
    52 noise
    53 performance
    54 phantom
    55 phantom acquisitions
    56 procedure
    57 program
    58 quantitative performance
    59 quantitative study
    60 reconstruction difference
    61 reconstruction procedure
    62 recovery
    63 recovery coefficient
    64 scanner
    65 solution
    66 study
    67 system
    68 uniform
    69 value accuracy
    70 variability
    71 schema:name Feasibility of PET/CT system performance harmonisation for quantitative multicentre 89Zr studies
    72 schema:pagination 26
    73 schema:productId N7d287de4acaa466884f6b8bb732b8d37
    74 N9c6d0716ed794d54a4c9a7475e3171a6
    75 Nacb0a5602c9d4697aa346c64cf2e64e1
    76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106216905
    77 https://doi.org/10.1186/s40658-018-0226-7
    78 schema:sdDatePublished 2022-05-20T07:34
    79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    80 schema:sdPublisher Nf5c068a80afb4da5b1da1ed57c3639af
    81 schema:url https://doi.org/10.1186/s40658-018-0226-7
    82 sgo:license sg:explorer/license/
    83 sgo:sdDataset articles
    84 rdf:type schema:ScholarlyArticle
    85 N3c0db48405b9456894b83bd8279bd51b schema:issueNumber 1
    86 rdf:type schema:PublicationIssue
    87 N53d293aefdaa43f1829681edab1b52f3 rdf:first sg:person.01006327107.21
    88 rdf:rest N7d7a92bd266d49bb98f47cf4d81e53d9
    89 N632186517fbc4182b9dc2b63065bbb81 rdf:first sg:person.01361420011.63
    90 rdf:rest rdf:nil
    91 N7d287de4acaa466884f6b8bb732b8d37 schema:name dimensions_id
    92 schema:value pub.1106216905
    93 rdf:type schema:PropertyValue
    94 N7d7a92bd266d49bb98f47cf4d81e53d9 rdf:first sg:person.01047546553.40
    95 rdf:rest Ncc31af3f0b184fd788bec702fec977fa
    96 N9c6d0716ed794d54a4c9a7475e3171a6 schema:name pubmed_id
    97 schema:value 30460577
    98 rdf:type schema:PropertyValue
    99 Nacb0a5602c9d4697aa346c64cf2e64e1 schema:name doi
    100 schema:value 10.1186/s40658-018-0226-7
    101 rdf:type schema:PropertyValue
    102 Nc16347e9bbb2493792c5b90179d1127f schema:volumeNumber 5
    103 rdf:type schema:PublicationVolume
    104 Ncc31af3f0b184fd788bec702fec977fa rdf:first sg:person.0665425270.49
    105 rdf:rest N632186517fbc4182b9dc2b63065bbb81
    106 Ndebeb77d50404a2ab38244d46c927078 rdf:first sg:person.014305542415.23
    107 rdf:rest N53d293aefdaa43f1829681edab1b52f3
    108 Nf5c068a80afb4da5b1da1ed57c3639af schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Information and Computing Sciences
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Artificial Intelligence and Image Processing
    115 rdf:type schema:DefinedTerm
    116 sg:grant.6621942 http://pending.schema.org/fundedItem sg:pub.10.1186/s40658-018-0226-7
    117 rdf:type schema:MonetaryGrant
    118 sg:journal.1051885 schema:issn 2197-7364
    119 schema:name EJNMMI Physics
    120 schema:publisher Springer Nature
    121 rdf:type schema:Periodical
    122 sg:person.01006327107.21 schema:affiliation grid-institutes:grid.16872.3a
    123 schema:familyName Huisman
    124 schema:givenName Marc
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006327107.21
    126 rdf:type schema:Person
    127 sg:person.01047546553.40 schema:affiliation grid-institutes:grid.488256.5
    128 schema:familyName Sera
    129 schema:givenName Terez
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047546553.40
    131 rdf:type schema:Person
    132 sg:person.01361420011.63 schema:affiliation grid-institutes:grid.4494.d
    133 schema:familyName Boellaard
    134 schema:givenName Ronald
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63
    136 rdf:type schema:Person
    137 sg:person.014305542415.23 schema:affiliation grid-institutes:grid.454953.a
    138 schema:familyName Kaalep
    139 schema:givenName Andres
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014305542415.23
    141 rdf:type schema:Person
    142 sg:person.0665425270.49 schema:affiliation grid-institutes:grid.16872.3a
    143 schema:familyName Vugts
    144 schema:givenName Danielle
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665425270.49
    146 rdf:type schema:Person
    147 sg:pub.10.1007/s00259-014-2961-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008918527
    148 https://doi.org/10.1007/s00259-014-2961-x
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s00259-017-3740-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086069747
    151 https://doi.org/10.1007/s00259-017-3740-2
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s00259-017-3853-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093093451
    154 https://doi.org/10.1007/s00259-017-3853-7
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1186/s40658-016-0144-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036370547
    157 https://doi.org/10.1186/s40658-016-0144-5
    158 rdf:type schema:CreativeWork
    159 grid-institutes:grid.16872.3a schema:alternateName Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
    160 schema:name Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
    161 rdf:type schema:Organization
    162 grid-institutes:grid.4494.d schema:alternateName Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
    163 schema:name Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
    164 Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
    165 rdf:type schema:Organization
    166 grid-institutes:grid.454953.a schema:alternateName Department of Medical Technology, North Estonia Medical Centre Foundation, J. Sutiste Str 19, 13419, Tallinn, Estonia
    167 schema:name Department of Medical Technology, North Estonia Medical Centre Foundation, J. Sutiste Str 19, 13419, Tallinn, Estonia
    168 rdf:type schema:Organization
    169 grid-institutes:grid.488256.5 schema:alternateName EANM Research Limited (EARL), Vienna, Austria
    170 schema:name Department of Nuclear Medicine, University of Szeged, Szeged, Hungary
    171 EANM Research Limited (EARL), Vienna, Austria
    172 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...