Dental artifacts in the head and neck region: implications for Dixon-based attenuation correction in PET/MR View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Claes N Ladefoged, Adam E Hansen, Sune H Keller, Barbara M Fischer, Jacob H Rasmussen, Ian Law, Andreas Kjær, Liselotte Højgaard, Francois Lauze, Thomas Beyer, Flemming L Andersen

ABSTRACT

BACKGROUND: In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC. METHODS: A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8 cm covering the head and neck. MR-AC was based on either standard MR-ACDIXON or MR-ACINPAINTED where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported. RESULTS: The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8 mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (± 11%) and 28% (± 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map. CONCLUSIONS: Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region. More... »

PAGES

8

References to SciGraph publications

  • 2013-04. PET/MR imaging of the pelvis in the presence of endoprostheses: reducing image artifacts and increasing accuracy through inpainting in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2013-02. PET/MRI in cancer patients: first experiences and vision from Copenhagen in MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE
  • 2009-03. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2013-01. PET/MRI in head and neck cancer: initial experience in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-08. Bildgebung bei Erkrankungen des Nasopharynx in HNO
  • 2011-06. The future of hybrid imaging—part 2: PET/CT in INSIGHTS INTO IMAGING
  • 2013-02. Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI in MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40658-015-0112-5

    DOI

    http://dx.doi.org/10.1186/s40658-015-0112-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037261090

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26501810


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ladefoged", 
            "givenName": "Claes N", 
            "id": "sg:person.01316451111.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316451111.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hansen", 
            "givenName": "Adam E", 
            "id": "sg:person.0742142346.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742142346.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Keller", 
            "givenName": "Sune H", 
            "id": "sg:person.0705734737.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705734737.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fischer", 
            "givenName": "Barbara M", 
            "id": "sg:person.01317534264.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317534264.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rasmussen", 
            "givenName": "Jacob H", 
            "id": "sg:person.01235574133.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235574133.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Law", 
            "givenName": "Ian", 
            "id": "sg:person.0721611050.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721611050.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kj\u00e6r", 
            "givenName": "Andreas", 
            "id": "sg:person.01250424037.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250424037.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "H\u00f8jgaard", 
            "givenName": "Liselotte", 
            "id": "sg:person.0715465121.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715465121.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Copenhagen", 
              "id": "https://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "Department of Computer Science, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lauze", 
            "givenName": "Francois", 
            "id": "sg:person.0727314005.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727314005.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Medical University of Vienna", 
              "id": "https://www.grid.ac/institutes/grid.22937.3d", 
              "name": [
                "Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20/4L, A-1090, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beyer", 
            "givenName": "Thomas", 
            "id": "sg:person.0657742114.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657742114.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Andersen", 
            "givenName": "Flemming L", 
            "id": "sg:person.0717736532.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717736532.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1118/1.598392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005790896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.25516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008443664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.25516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008443664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.108.057307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009233958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.108.054726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013636390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.109.061853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013780396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2013.08.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016265594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.113.129304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018664025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.111.092726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019167583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-012-2316-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020497590", 
              "https://doi.org/10.1007/s00259-012-2316-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mibio.2004.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021623528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1102/1470-7330.2006.0029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024455780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-012-2248-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026158697", 
              "https://doi.org/10.1007/s00259-012-2248-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-012-2248-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026158697", 
              "https://doi.org/10.1007/s00259-012-2248-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.113.129254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029664168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10334-012-0357-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031164577", 
              "https://doi.org/10.1007/s10334-012-0357-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10334-012-0345-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034224250", 
              "https://doi.org/10.1007/s10334-012-0345-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.113.129262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038376414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.22112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039256097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.22112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039256097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.25126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040362429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2007.14.5631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040428642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.24219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043320537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-008-1007-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043480777", 
              "https://doi.org/10.1007/s00259-008-1007-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-008-1007-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043480777", 
              "https://doi.org/10.1007/s00259-008-1007-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.112.113209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045206033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00106-009-1966-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046025747", 
              "https://doi.org/10.1007/s00106-009-1966-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00106-009-1966-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046025747", 
              "https://doi.org/10.1007/s00106-009-1966-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00106-009-1966-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046025747", 
              "https://doi.org/10.1007/s00106-009-1966-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13244-011-0069-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050909902", 
              "https://doi.org/10.1007/s13244-011-0069-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.113.130880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052149338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/59/11/2713", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059030294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/83.902291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061240267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2005.857230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1259/bjr.20120570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064565070"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12", 
        "datePublishedReg": "2015-12-01", 
        "description": "BACKGROUND: In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC.\nMETHODS: A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8\u00a0cm covering the head and neck. MR-AC was based on either standard MR-ACDIXON or MR-ACINPAINTED where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported.\nRESULTS: The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8\u00a0mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (\u00b1 11%) and 28% (\u00b1 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map.\nCONCLUSIONS: Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s40658-015-0112-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1051885", 
            "issn": [
              "2197-7364"
            ], 
            "name": "EJNMMI Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "Dental artifacts in the head and neck region: implications for Dixon-based attenuation correction in PET/MR", 
        "pagination": "8", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b17fbeeb9bcbdf44324a7d2688383ef3ee1c58956061469acbd6418c19c672f1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26501810"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101658952"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40658-015-0112-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037261090"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40658-015-0112-5", 
          "https://app.dimensions.ai/details/publication/pub.1037261090"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88227_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fs40658-015-0112-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40658-015-0112-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40658-015-0112-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40658-015-0112-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40658-015-0112-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    253 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40658-015-0112-5 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N168d4192e4a74bdf8525738880190e14
    4 schema:citation sg:pub.10.1007/s00106-009-1966-4
    5 sg:pub.10.1007/s00259-008-1007-7
    6 sg:pub.10.1007/s00259-012-2248-z
    7 sg:pub.10.1007/s00259-012-2316-4
    8 sg:pub.10.1007/s10334-012-0345-4
    9 sg:pub.10.1007/s10334-012-0357-0
    10 sg:pub.10.1007/s13244-011-0069-4
    11 https://doi.org/10.1002/ijc.25516
    12 https://doi.org/10.1002/jmri.22112
    13 https://doi.org/10.1002/mrm.24219
    14 https://doi.org/10.1002/mrm.25126
    15 https://doi.org/10.1016/j.mibio.2004.04.006
    16 https://doi.org/10.1016/j.neuroimage.2013.08.042
    17 https://doi.org/10.1088/0031-9155/59/11/2713
    18 https://doi.org/10.1102/1470-7330.2006.0029
    19 https://doi.org/10.1109/83.902291
    20 https://doi.org/10.1109/tmi.2005.857230
    21 https://doi.org/10.1118/1.598392
    22 https://doi.org/10.1200/jco.2007.14.5631
    23 https://doi.org/10.1259/bjr.20120570
    24 https://doi.org/10.2967/jnumed.108.054726
    25 https://doi.org/10.2967/jnumed.108.057307
    26 https://doi.org/10.2967/jnumed.109.061853
    27 https://doi.org/10.2967/jnumed.111.092726
    28 https://doi.org/10.2967/jnumed.112.113209
    29 https://doi.org/10.2967/jnumed.113.129254
    30 https://doi.org/10.2967/jnumed.113.129262
    31 https://doi.org/10.2967/jnumed.113.129304
    32 https://doi.org/10.2967/jnumed.113.130880
    33 schema:datePublished 2015-12
    34 schema:datePublishedReg 2015-12-01
    35 schema:description BACKGROUND: In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC. METHODS: A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8 cm covering the head and neck. MR-AC was based on either standard MR-ACDIXON or MR-ACINPAINTED where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported. RESULTS: The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8 mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (± 11%) and 28% (± 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map. CONCLUSIONS: Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N0d1643711a4d4ac79f5f7fb354010bff
    40 Nf17eb54de14e4fbdba724654f0682b84
    41 sg:journal.1051885
    42 schema:name Dental artifacts in the head and neck region: implications for Dixon-based attenuation correction in PET/MR
    43 schema:pagination 8
    44 schema:productId N999ce2ba3fdd45b7a53dd96dc55db32b
    45 Nc6fcf0c526f8441982e5e2a1ef9c6039
    46 Nc891f7140c5046549750a32d219284f6
    47 Nd2d5e10c0a1f432ba3a7c08bd5bd0e27
    48 Nd5f8f501a21a4c9e845dfee1f51a2ea1
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037261090
    50 https://doi.org/10.1186/s40658-015-0112-5
    51 schema:sdDatePublished 2019-04-11T13:08
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N956c1798d20b427ea2e0e5ead1d38cb4
    54 schema:url http://link.springer.com/10.1186%2Fs40658-015-0112-5
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N04965e313d1d4c859bb1fda09f6c3fb8 rdf:first sg:person.0657742114.07
    59 rdf:rest Ndb514b6114dd4695a27208934111efca
    60 N05dfc4cdad244631b531369374a22a73 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    61 rdf:type schema:Organization
    62 N07d4d71f07a14456b2770b8321ac8dcd rdf:first sg:person.0742142346.96
    63 rdf:rest Nd08174327965432d80379a010364ec97
    64 N0d016bc1cf464b55a038a2d8f97fc91f rdf:first sg:person.0727314005.06
    65 rdf:rest N04965e313d1d4c859bb1fda09f6c3fb8
    66 N0d1643711a4d4ac79f5f7fb354010bff schema:issueNumber 1
    67 rdf:type schema:PublicationIssue
    68 N168d4192e4a74bdf8525738880190e14 rdf:first sg:person.01316451111.03
    69 rdf:rest N07d4d71f07a14456b2770b8321ac8dcd
    70 N5b5fca916a92494b9e536dbbff4f82f4 schema:name Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    71 rdf:type schema:Organization
    72 N665a43bb2e664dc9b7428a49545b0382 rdf:first sg:person.01250424037.22
    73 rdf:rest N95459cb2dfd4430f817c6c1ea19a5fb3
    74 N754ca7dbc78042eeb8b0ef2e6862256d rdf:first sg:person.01317534264.04
    75 rdf:rest N95637dc2fc6d4cbdaf1d8184e43c3ef5
    76 N899673f6aae84dd68a2478b4cdff3083 rdf:first sg:person.0721611050.41
    77 rdf:rest N665a43bb2e664dc9b7428a49545b0382
    78 N89c1b4fe2af046848aa2d60158719abe schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    79 rdf:type schema:Organization
    80 N909a7554b1d646188f12abe351ef679e schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    81 rdf:type schema:Organization
    82 N95459cb2dfd4430f817c6c1ea19a5fb3 rdf:first sg:person.0715465121.32
    83 rdf:rest N0d016bc1cf464b55a038a2d8f97fc91f
    84 N95637dc2fc6d4cbdaf1d8184e43c3ef5 rdf:first sg:person.01235574133.35
    85 rdf:rest N899673f6aae84dd68a2478b4cdff3083
    86 N956c1798d20b427ea2e0e5ead1d38cb4 schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 N999ce2ba3fdd45b7a53dd96dc55db32b schema:name dimensions_id
    89 schema:value pub.1037261090
    90 rdf:type schema:PropertyValue
    91 Nae89d9cf8ee74b539a10b4e0eeefa8fe schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    92 rdf:type schema:Organization
    93 Nb682f67b23d64b1493b6260e44912755 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    94 rdf:type schema:Organization
    95 Nc6fcf0c526f8441982e5e2a1ef9c6039 schema:name nlm_unique_id
    96 schema:value 101658952
    97 rdf:type schema:PropertyValue
    98 Nc891f7140c5046549750a32d219284f6 schema:name readcube_id
    99 schema:value b17fbeeb9bcbdf44324a7d2688383ef3ee1c58956061469acbd6418c19c672f1
    100 rdf:type schema:PropertyValue
    101 Ncb2a23ab586144b29aa0b6d731a3d514 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    102 rdf:type schema:Organization
    103 Nd08174327965432d80379a010364ec97 rdf:first sg:person.0705734737.91
    104 rdf:rest N754ca7dbc78042eeb8b0ef2e6862256d
    105 Nd2d5e10c0a1f432ba3a7c08bd5bd0e27 schema:name pubmed_id
    106 schema:value 26501810
    107 rdf:type schema:PropertyValue
    108 Nd5f8f501a21a4c9e845dfee1f51a2ea1 schema:name doi
    109 schema:value 10.1186/s40658-015-0112-5
    110 rdf:type schema:PropertyValue
    111 Ndb514b6114dd4695a27208934111efca rdf:first sg:person.0717736532.87
    112 rdf:rest rdf:nil
    113 Nde161e85ddf24999a3992d8e8ff5ddfe schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    114 rdf:type schema:Organization
    115 Nef606aa577624da6bf43ac48b30a3c11 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    116 rdf:type schema:Organization
    117 Nf17eb54de14e4fbdba724654f0682b84 schema:volumeNumber 2
    118 rdf:type schema:PublicationVolume
    119 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Medical and Health Sciences
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Clinical Sciences
    124 rdf:type schema:DefinedTerm
    125 sg:journal.1051885 schema:issn 2197-7364
    126 schema:name EJNMMI Physics
    127 rdf:type schema:Periodical
    128 sg:person.01235574133.35 schema:affiliation N5b5fca916a92494b9e536dbbff4f82f4
    129 schema:familyName Rasmussen
    130 schema:givenName Jacob H
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235574133.35
    132 rdf:type schema:Person
    133 sg:person.01250424037.22 schema:affiliation Nde161e85ddf24999a3992d8e8ff5ddfe
    134 schema:familyName Kjær
    135 schema:givenName Andreas
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250424037.22
    137 rdf:type schema:Person
    138 sg:person.01316451111.03 schema:affiliation Nae89d9cf8ee74b539a10b4e0eeefa8fe
    139 schema:familyName Ladefoged
    140 schema:givenName Claes N
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316451111.03
    142 rdf:type schema:Person
    143 sg:person.01317534264.04 schema:affiliation N909a7554b1d646188f12abe351ef679e
    144 schema:familyName Fischer
    145 schema:givenName Barbara M
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317534264.04
    147 rdf:type schema:Person
    148 sg:person.0657742114.07 schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
    149 schema:familyName Beyer
    150 schema:givenName Thomas
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657742114.07
    152 rdf:type schema:Person
    153 sg:person.0705734737.91 schema:affiliation N05dfc4cdad244631b531369374a22a73
    154 schema:familyName Keller
    155 schema:givenName Sune H
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705734737.91
    157 rdf:type schema:Person
    158 sg:person.0715465121.32 schema:affiliation Nef606aa577624da6bf43ac48b30a3c11
    159 schema:familyName Højgaard
    160 schema:givenName Liselotte
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715465121.32
    162 rdf:type schema:Person
    163 sg:person.0717736532.87 schema:affiliation Nb682f67b23d64b1493b6260e44912755
    164 schema:familyName Andersen
    165 schema:givenName Flemming L
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717736532.87
    167 rdf:type schema:Person
    168 sg:person.0721611050.41 schema:affiliation N89c1b4fe2af046848aa2d60158719abe
    169 schema:familyName Law
    170 schema:givenName Ian
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721611050.41
    172 rdf:type schema:Person
    173 sg:person.0727314005.06 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
    174 schema:familyName Lauze
    175 schema:givenName Francois
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727314005.06
    177 rdf:type schema:Person
    178 sg:person.0742142346.96 schema:affiliation Ncb2a23ab586144b29aa0b6d731a3d514
    179 schema:familyName Hansen
    180 schema:givenName Adam E
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742142346.96
    182 rdf:type schema:Person
    183 sg:pub.10.1007/s00106-009-1966-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046025747
    184 https://doi.org/10.1007/s00106-009-1966-4
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s00259-008-1007-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043480777
    187 https://doi.org/10.1007/s00259-008-1007-7
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s00259-012-2248-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026158697
    190 https://doi.org/10.1007/s00259-012-2248-z
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s00259-012-2316-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020497590
    193 https://doi.org/10.1007/s00259-012-2316-4
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s10334-012-0345-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034224250
    196 https://doi.org/10.1007/s10334-012-0345-4
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s10334-012-0357-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031164577
    199 https://doi.org/10.1007/s10334-012-0357-0
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s13244-011-0069-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050909902
    202 https://doi.org/10.1007/s13244-011-0069-4
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1002/ijc.25516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008443664
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1002/jmri.22112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039256097
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1002/mrm.24219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043320537
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1002/mrm.25126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040362429
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.mibio.2004.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021623528
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.neuroimage.2013.08.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016265594
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1088/0031-9155/59/11/2713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059030294
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1102/1470-7330.2006.0029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024455780
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1109/83.902291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240267
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1109/tmi.2005.857230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694780
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1118/1.598392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005790896
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1200/jco.2007.14.5631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040428642
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1259/bjr.20120570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064565070
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.2967/jnumed.108.054726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013636390
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.2967/jnumed.108.057307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009233958
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.2967/jnumed.109.061853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013780396
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.2967/jnumed.111.092726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019167583
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.2967/jnumed.112.113209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045206033
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.2967/jnumed.113.129254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029664168
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.2967/jnumed.113.129262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038376414
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.2967/jnumed.113.129304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018664025
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.2967/jnumed.113.130880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052149338
    247 rdf:type schema:CreativeWork
    248 https://www.grid.ac/institutes/grid.22937.3d schema:alternateName Medical University of Vienna
    249 schema:name Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20/4L, A-1090, Vienna, Austria
    250 rdf:type schema:Organization
    251 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
    252 schema:name Department of Computer Science, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen East, Denmark
    253 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...