Dental artifacts in the head and neck region: implications for Dixon-based attenuation correction in PET/MR View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Claes N Ladefoged, Adam E Hansen, Sune H Keller, Barbara M Fischer, Jacob H Rasmussen, Ian Law, Andreas Kjær, Liselotte Højgaard, Francois Lauze, Thomas Beyer, Flemming L Andersen

ABSTRACT

BACKGROUND: In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC. METHODS: A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8 cm covering the head and neck. MR-AC was based on either standard MR-ACDIXON or MR-ACINPAINTED where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported. RESULTS: The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8 mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (± 11%) and 28% (± 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map. CONCLUSIONS: Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region. More... »

PAGES

8

References to SciGraph publications

  • 2013-04. PET/MR imaging of the pelvis in the presence of endoprostheses: reducing image artifacts and increasing accuracy through inpainting in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2013-02. PET/MRI in cancer patients: first experiences and vision from Copenhagen in MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE
  • 2009-03. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2013-01. PET/MRI in head and neck cancer: initial experience in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-08. Bildgebung bei Erkrankungen des Nasopharynx in HNO
  • 2011-06. The future of hybrid imaging—part 2: PET/CT in INSIGHTS INTO IMAGING
  • 2013-02. Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI in MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40658-015-0112-5

    DOI

    http://dx.doi.org/10.1186/s40658-015-0112-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037261090

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26501810


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ladefoged", 
            "givenName": "Claes N", 
            "id": "sg:person.01316451111.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316451111.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hansen", 
            "givenName": "Adam E", 
            "id": "sg:person.0742142346.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742142346.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Keller", 
            "givenName": "Sune H", 
            "id": "sg:person.0705734737.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705734737.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fischer", 
            "givenName": "Barbara M", 
            "id": "sg:person.01317534264.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317534264.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rasmussen", 
            "givenName": "Jacob H", 
            "id": "sg:person.01235574133.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235574133.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Law", 
            "givenName": "Ian", 
            "id": "sg:person.0721611050.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721611050.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kj\u00e6r", 
            "givenName": "Andreas", 
            "id": "sg:person.01250424037.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250424037.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "H\u00f8jgaard", 
            "givenName": "Liselotte", 
            "id": "sg:person.0715465121.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715465121.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Copenhagen", 
              "id": "https://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "Department of Computer Science, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lauze", 
            "givenName": "Francois", 
            "id": "sg:person.0727314005.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727314005.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Medical University of Vienna", 
              "id": "https://www.grid.ac/institutes/grid.22937.3d", 
              "name": [
                "Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20/4L, A-1090, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beyer", 
            "givenName": "Thomas", 
            "id": "sg:person.0657742114.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657742114.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Andersen", 
            "givenName": "Flemming L", 
            "id": "sg:person.0717736532.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717736532.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1118/1.598392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005790896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.25516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008443664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.25516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008443664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.108.057307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009233958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.108.054726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013636390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.109.061853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013780396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2013.08.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016265594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.113.129304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018664025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.111.092726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019167583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-012-2316-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020497590", 
              "https://doi.org/10.1007/s00259-012-2316-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mibio.2004.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021623528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1102/1470-7330.2006.0029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024455780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-012-2248-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026158697", 
              "https://doi.org/10.1007/s00259-012-2248-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-012-2248-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026158697", 
              "https://doi.org/10.1007/s00259-012-2248-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.113.129254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029664168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10334-012-0357-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031164577", 
              "https://doi.org/10.1007/s10334-012-0357-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10334-012-0345-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034224250", 
              "https://doi.org/10.1007/s10334-012-0345-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.113.129262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038376414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.22112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039256097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.22112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039256097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.25126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040362429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2007.14.5631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040428642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.24219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043320537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-008-1007-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043480777", 
              "https://doi.org/10.1007/s00259-008-1007-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-008-1007-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043480777", 
              "https://doi.org/10.1007/s00259-008-1007-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.112.113209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045206033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00106-009-1966-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046025747", 
              "https://doi.org/10.1007/s00106-009-1966-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00106-009-1966-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046025747", 
              "https://doi.org/10.1007/s00106-009-1966-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00106-009-1966-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046025747", 
              "https://doi.org/10.1007/s00106-009-1966-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13244-011-0069-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050909902", 
              "https://doi.org/10.1007/s13244-011-0069-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.113.130880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052149338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/59/11/2713", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059030294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/83.902291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061240267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2005.857230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1259/bjr.20120570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064565070"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12", 
        "datePublishedReg": "2015-12-01", 
        "description": "BACKGROUND: In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC.\nMETHODS: A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8\u00a0cm covering the head and neck. MR-AC was based on either standard MR-ACDIXON or MR-ACINPAINTED where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported.\nRESULTS: The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8\u00a0mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (\u00b1 11%) and 28% (\u00b1 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map.\nCONCLUSIONS: Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s40658-015-0112-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1051885", 
            "issn": [
              "2197-7364"
            ], 
            "name": "EJNMMI Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "Dental artifacts in the head and neck region: implications for Dixon-based attenuation correction in PET/MR", 
        "pagination": "8", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b17fbeeb9bcbdf44324a7d2688383ef3ee1c58956061469acbd6418c19c672f1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26501810"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101658952"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40658-015-0112-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037261090"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40658-015-0112-5", 
          "https://app.dimensions.ai/details/publication/pub.1037261090"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88227_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fs40658-015-0112-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40658-015-0112-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40658-015-0112-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40658-015-0112-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40658-015-0112-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    253 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40658-015-0112-5 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N2021e001a2c0489493e96a9f7a861e05
    4 schema:citation sg:pub.10.1007/s00106-009-1966-4
    5 sg:pub.10.1007/s00259-008-1007-7
    6 sg:pub.10.1007/s00259-012-2248-z
    7 sg:pub.10.1007/s00259-012-2316-4
    8 sg:pub.10.1007/s10334-012-0345-4
    9 sg:pub.10.1007/s10334-012-0357-0
    10 sg:pub.10.1007/s13244-011-0069-4
    11 https://doi.org/10.1002/ijc.25516
    12 https://doi.org/10.1002/jmri.22112
    13 https://doi.org/10.1002/mrm.24219
    14 https://doi.org/10.1002/mrm.25126
    15 https://doi.org/10.1016/j.mibio.2004.04.006
    16 https://doi.org/10.1016/j.neuroimage.2013.08.042
    17 https://doi.org/10.1088/0031-9155/59/11/2713
    18 https://doi.org/10.1102/1470-7330.2006.0029
    19 https://doi.org/10.1109/83.902291
    20 https://doi.org/10.1109/tmi.2005.857230
    21 https://doi.org/10.1118/1.598392
    22 https://doi.org/10.1200/jco.2007.14.5631
    23 https://doi.org/10.1259/bjr.20120570
    24 https://doi.org/10.2967/jnumed.108.054726
    25 https://doi.org/10.2967/jnumed.108.057307
    26 https://doi.org/10.2967/jnumed.109.061853
    27 https://doi.org/10.2967/jnumed.111.092726
    28 https://doi.org/10.2967/jnumed.112.113209
    29 https://doi.org/10.2967/jnumed.113.129254
    30 https://doi.org/10.2967/jnumed.113.129262
    31 https://doi.org/10.2967/jnumed.113.129304
    32 https://doi.org/10.2967/jnumed.113.130880
    33 schema:datePublished 2015-12
    34 schema:datePublishedReg 2015-12-01
    35 schema:description BACKGROUND: In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC. METHODS: A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8 cm covering the head and neck. MR-AC was based on either standard MR-ACDIXON or MR-ACINPAINTED where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported. RESULTS: The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8 mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (± 11%) and 28% (± 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map. CONCLUSIONS: Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N9e80d910570441da98be9e07ccdd61c7
    40 Nd4ccd9c313e74060bc5ee1bf9363a539
    41 sg:journal.1051885
    42 schema:name Dental artifacts in the head and neck region: implications for Dixon-based attenuation correction in PET/MR
    43 schema:pagination 8
    44 schema:productId N035b6de247424bb38b16cbaede13fbe7
    45 N08956a022bd5461e87738a62498e9962
    46 N0d565bbde66c426e949ded21572dc9f7
    47 N176d65f064fe430f8a416eeeccd44155
    48 Ndcda7ad89f8c4729aaa5d10a4a5b472c
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037261090
    50 https://doi.org/10.1186/s40658-015-0112-5
    51 schema:sdDatePublished 2019-04-11T13:08
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N68de3c124bd34750a67ce097adb58021
    54 schema:url http://link.springer.com/10.1186%2Fs40658-015-0112-5
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N035b6de247424bb38b16cbaede13fbe7 schema:name readcube_id
    59 schema:value b17fbeeb9bcbdf44324a7d2688383ef3ee1c58956061469acbd6418c19c672f1
    60 rdf:type schema:PropertyValue
    61 N0404518769a84823b80ef94d7d018241 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    62 rdf:type schema:Organization
    63 N08956a022bd5461e87738a62498e9962 schema:name nlm_unique_id
    64 schema:value 101658952
    65 rdf:type schema:PropertyValue
    66 N0d565bbde66c426e949ded21572dc9f7 schema:name doi
    67 schema:value 10.1186/s40658-015-0112-5
    68 rdf:type schema:PropertyValue
    69 N176d65f064fe430f8a416eeeccd44155 schema:name pubmed_id
    70 schema:value 26501810
    71 rdf:type schema:PropertyValue
    72 N17d07c01928343e2a34d7f3a6a7afc29 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    73 rdf:type schema:Organization
    74 N1e89d4c8366e47f48d5858e0bb3eb055 rdf:first sg:person.01235574133.35
    75 rdf:rest N6ed5316b095747df9313442012a15c44
    76 N2021e001a2c0489493e96a9f7a861e05 rdf:first sg:person.01316451111.03
    77 rdf:rest Nc58a7b57bf234e9785f6ebc39f5ad3cc
    78 N5d4948b62387411782d61d080ebaafb6 rdf:first sg:person.01317534264.04
    79 rdf:rest N1e89d4c8366e47f48d5858e0bb3eb055
    80 N5d6c3a1e13044a4da5aff612f524631c schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    81 rdf:type schema:Organization
    82 N6023c33f6e4b458ba63e9f8479a48464 rdf:first sg:person.0727314005.06
    83 rdf:rest Nb3ed469043d440ee94c94b92e6a7a1b9
    84 N628296f56272405fba59d3ce0d5595f5 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    85 rdf:type schema:Organization
    86 N68de3c124bd34750a67ce097adb58021 schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 N6ed5316b095747df9313442012a15c44 rdf:first sg:person.0721611050.41
    89 rdf:rest Nf92ce59a9bb24e46a50878d3bc8a94dd
    90 N74885a2bd44a485591c322446d71b00f rdf:first sg:person.0717736532.87
    91 rdf:rest rdf:nil
    92 N79463cc52f6842ce97152abec572e5f7 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    93 rdf:type schema:Organization
    94 N854937cdb1b340a5b582760efb3a838a schema:name Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    95 rdf:type schema:Organization
    96 N8a11e7bd44b14b778fc0449f3dfd3220 rdf:first sg:person.0715465121.32
    97 rdf:rest N6023c33f6e4b458ba63e9f8479a48464
    98 N9e1db566290849a88985c4318ab6f888 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    99 rdf:type schema:Organization
    100 N9e80d910570441da98be9e07ccdd61c7 schema:volumeNumber 2
    101 rdf:type schema:PublicationVolume
    102 Na9d1b68d304a4d4aa2fd747caef7dee5 rdf:first sg:person.0705734737.91
    103 rdf:rest N5d4948b62387411782d61d080ebaafb6
    104 Nb3ed469043d440ee94c94b92e6a7a1b9 rdf:first sg:person.0657742114.07
    105 rdf:rest N74885a2bd44a485591c322446d71b00f
    106 Nbdc9eff6a6b14942947dd801f1bc2b18 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    107 rdf:type schema:Organization
    108 Nc58a7b57bf234e9785f6ebc39f5ad3cc rdf:first sg:person.0742142346.96
    109 rdf:rest Na9d1b68d304a4d4aa2fd747caef7dee5
    110 Nd4ccd9c313e74060bc5ee1bf9363a539 schema:issueNumber 1
    111 rdf:type schema:PublicationIssue
    112 Ndcda7ad89f8c4729aaa5d10a4a5b472c schema:name dimensions_id
    113 schema:value pub.1037261090
    114 rdf:type schema:PropertyValue
    115 Nea603fd3226e49e7adf29fe3d6bdc4a6 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
    116 rdf:type schema:Organization
    117 Nf92ce59a9bb24e46a50878d3bc8a94dd rdf:first sg:person.01250424037.22
    118 rdf:rest N8a11e7bd44b14b778fc0449f3dfd3220
    119 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Medical and Health Sciences
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Clinical Sciences
    124 rdf:type schema:DefinedTerm
    125 sg:journal.1051885 schema:issn 2197-7364
    126 schema:name EJNMMI Physics
    127 rdf:type schema:Periodical
    128 sg:person.01235574133.35 schema:affiliation N854937cdb1b340a5b582760efb3a838a
    129 schema:familyName Rasmussen
    130 schema:givenName Jacob H
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235574133.35
    132 rdf:type schema:Person
    133 sg:person.01250424037.22 schema:affiliation N17d07c01928343e2a34d7f3a6a7afc29
    134 schema:familyName Kjær
    135 schema:givenName Andreas
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250424037.22
    137 rdf:type schema:Person
    138 sg:person.01316451111.03 schema:affiliation N79463cc52f6842ce97152abec572e5f7
    139 schema:familyName Ladefoged
    140 schema:givenName Claes N
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316451111.03
    142 rdf:type schema:Person
    143 sg:person.01317534264.04 schema:affiliation N0404518769a84823b80ef94d7d018241
    144 schema:familyName Fischer
    145 schema:givenName Barbara M
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317534264.04
    147 rdf:type schema:Person
    148 sg:person.0657742114.07 schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
    149 schema:familyName Beyer
    150 schema:givenName Thomas
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657742114.07
    152 rdf:type schema:Person
    153 sg:person.0705734737.91 schema:affiliation Nea603fd3226e49e7adf29fe3d6bdc4a6
    154 schema:familyName Keller
    155 schema:givenName Sune H
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705734737.91
    157 rdf:type schema:Person
    158 sg:person.0715465121.32 schema:affiliation N628296f56272405fba59d3ce0d5595f5
    159 schema:familyName Højgaard
    160 schema:givenName Liselotte
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715465121.32
    162 rdf:type schema:Person
    163 sg:person.0717736532.87 schema:affiliation N5d6c3a1e13044a4da5aff612f524631c
    164 schema:familyName Andersen
    165 schema:givenName Flemming L
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717736532.87
    167 rdf:type schema:Person
    168 sg:person.0721611050.41 schema:affiliation N9e1db566290849a88985c4318ab6f888
    169 schema:familyName Law
    170 schema:givenName Ian
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721611050.41
    172 rdf:type schema:Person
    173 sg:person.0727314005.06 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
    174 schema:familyName Lauze
    175 schema:givenName Francois
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727314005.06
    177 rdf:type schema:Person
    178 sg:person.0742142346.96 schema:affiliation Nbdc9eff6a6b14942947dd801f1bc2b18
    179 schema:familyName Hansen
    180 schema:givenName Adam E
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742142346.96
    182 rdf:type schema:Person
    183 sg:pub.10.1007/s00106-009-1966-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046025747
    184 https://doi.org/10.1007/s00106-009-1966-4
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s00259-008-1007-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043480777
    187 https://doi.org/10.1007/s00259-008-1007-7
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s00259-012-2248-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026158697
    190 https://doi.org/10.1007/s00259-012-2248-z
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s00259-012-2316-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020497590
    193 https://doi.org/10.1007/s00259-012-2316-4
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s10334-012-0345-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034224250
    196 https://doi.org/10.1007/s10334-012-0345-4
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s10334-012-0357-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031164577
    199 https://doi.org/10.1007/s10334-012-0357-0
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s13244-011-0069-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050909902
    202 https://doi.org/10.1007/s13244-011-0069-4
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1002/ijc.25516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008443664
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1002/jmri.22112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039256097
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1002/mrm.24219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043320537
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1002/mrm.25126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040362429
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.mibio.2004.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021623528
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.neuroimage.2013.08.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016265594
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1088/0031-9155/59/11/2713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059030294
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1102/1470-7330.2006.0029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024455780
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1109/83.902291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240267
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1109/tmi.2005.857230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694780
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1118/1.598392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005790896
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1200/jco.2007.14.5631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040428642
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1259/bjr.20120570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064565070
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.2967/jnumed.108.054726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013636390
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.2967/jnumed.108.057307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009233958
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.2967/jnumed.109.061853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013780396
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.2967/jnumed.111.092726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019167583
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.2967/jnumed.112.113209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045206033
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.2967/jnumed.113.129254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029664168
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.2967/jnumed.113.129262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038376414
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.2967/jnumed.113.129304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018664025
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.2967/jnumed.113.130880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052149338
    247 rdf:type schema:CreativeWork
    248 https://www.grid.ac/institutes/grid.22937.3d schema:alternateName Medical University of Vienna
    249 schema:name Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20/4L, A-1090, Vienna, Austria
    250 rdf:type schema:Organization
    251 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
    252 schema:name Department of Computer Science, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen East, Denmark
    253 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...