Impact of incorrect tissue classification in Dixon-based MR-AC: fat-water tissue inversion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Claes Nøhr Ladefoged, Adam Espe Hansen, Sune Høgild Keller, Søren Holm, Ian Law, Thomas Beyer, Liselotte Højgaard, Andreas Kjær, Flemming Littrup Andersen

ABSTRACT

BACKGROUND: The current MR-based attenuation correction (AC) used in combined PET/MR systems computes a Dixon attenuation map (MR-ACDixon) based on fat and water images derived from in- and opposed-phase MRI. We observed an occasional fat/water inversion in MR-ACDixon. The aim of our study was to estimate the prevalence of this phenomenon in a large patient cohort and assess the possible bias on PET data. METHODS: PET/MRI was performed on a Siemens Biograph mMR (Siemens AG, Erlangen, Germany). We visually inspected attenuation maps of 283 brain or head/neck (H/N) patients, classified them as non-inverted or inverted, and calculated the fat/water tissue fraction. We selected ten FDG-PET brain patients with non-inverted attenuation maps for further analysis. Tissue inversion was simulated, and PET images were reconstructed using both original and inverted attenuation maps. The FDG-PET images of the ten brain patients were analyzed using 11 concentric annulus regions of 5 mm width placed over a central transaxial image plane traversing PETDixon. RESULTS: Out of the 283 patients, a fat/water inversion in 23 patients (8.1%) was observed. The average fraction of fat in the correct MR-ACDixon was 13% for brain and 17% for H/N patients. In the inverted cases, we found an average fat fraction of 56% for the brain patients and 41% for the H/N patients. The effect of the simulated tissue inversion in the brain studies was clearly seen on AC-PET images. The percent-difference image revealed a radial error where the largest difference was at the ventricles (30% ± 3%) and smallest at the cortical region (10% ± 2%). CONCLUSIONS: Tissue inversion in Dixon MRI is well known and can occur when there is an error in the off-resonance correction method. Tissue inversion needs to be considered if, based on Dixon-AC, the construction of normal PET databases is performed or any quantitative physiological parameters are fitted. Visual inspection is needed if Dixon-AC is to be used in clinical routine. More... »

PAGES

101

References to SciGraph publications

  • 2014-06. A comparison of CT- and MR-based attenuation correction in neurological PET in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2013-04. PET/MR imaging of the pelvis in the presence of endoprostheses: reducing image artifacts and increasing accuracy through inpainting in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2014. Image Distortions in Clinical PET/MR Imaging in PET/MRI
  • 2011-01. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2013-02. Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI in MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE
  • Journal

    TITLE

    EJNMMI Physics

    ISSUE

    1

    VOLUME

    1

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40658-014-0101-0

    DOI

    http://dx.doi.org/10.1186/s40658-014-0101-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049937272

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26501459


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ladefoged", 
            "givenName": "Claes N\u00f8hr", 
            "id": "sg:person.01316451111.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316451111.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hansen", 
            "givenName": "Adam Espe", 
            "id": "sg:person.0742142346.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742142346.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Keller", 
            "givenName": "Sune H\u00f8gild", 
            "id": "sg:person.0705734737.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705734737.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holm", 
            "givenName": "S\u00f8ren", 
            "id": "sg:person.0740340304.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740340304.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Law", 
            "givenName": "Ian", 
            "id": "sg:person.0721611050.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721611050.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Medical University of Vienna", 
              "id": "https://www.grid.ac/institutes/grid.22937.3d", 
              "name": [
                "Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20/4L, A-1090, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beyer", 
            "givenName": "Thomas", 
            "id": "sg:person.0657742114.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657742114.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "H\u00f8jgaard", 
            "givenName": "Liselotte", 
            "id": "sg:person.0715465121.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715465121.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kj\u00e6r", 
            "givenName": "Andreas", 
            "id": "sg:person.01250424037.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250424037.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Andersen", 
            "givenName": "Flemming Littrup", 
            "id": "sg:person.0717736532.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717736532.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00259-013-2652-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005326418", 
              "https://doi.org/10.1007/s00259-013-2652-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.108.057307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009233958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.113.126813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012895501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.108.054726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013636390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2013.08.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016265594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.111.092726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019167583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-012-2316-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020497590", 
              "https://doi.org/10.1007/s00259-012-2316-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-40692-8_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026181851", 
              "https://doi.org/10.1007/978-3-642-40692-8_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-010-1603-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032254809", 
              "https://doi.org/10.1007/s00259-010-1603-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-010-1603-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032254809", 
              "https://doi.org/10.1007/s00259-010-1603-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10334-012-0345-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034224250", 
              "https://doi.org/10.1007/s10334-012-0345-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.21492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037832968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.1910380606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039674148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004728-197903060-00018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044090430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004728-197903060-00018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044090430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiology.153.1.6089263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1081561244"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-12", 
        "datePublishedReg": "2014-12-01", 
        "description": "BACKGROUND: The current MR-based attenuation correction (AC) used in combined PET/MR systems computes a Dixon attenuation map (MR-ACDixon) based on fat and water images derived from in- and opposed-phase MRI. We observed an occasional fat/water inversion in MR-ACDixon. The aim of our study was to estimate the prevalence of this phenomenon in a large patient cohort and assess the possible bias on PET data.\nMETHODS: PET/MRI was performed on a Siemens Biograph mMR (Siemens AG, Erlangen, Germany). We visually inspected attenuation maps of 283 brain or head/neck (H/N) patients, classified them as non-inverted or inverted, and calculated the fat/water tissue fraction. We selected ten FDG-PET brain patients with non-inverted attenuation maps for further analysis. Tissue inversion was simulated, and PET images were reconstructed using both original and inverted attenuation maps. The FDG-PET images of the ten brain patients were analyzed using 11 concentric annulus regions of 5 mm width placed over a central transaxial image plane traversing PETDixon.\nRESULTS: Out of the 283 patients, a fat/water inversion in 23 patients (8.1%) was observed. The average fraction of fat in the correct MR-ACDixon was 13% for brain and 17% for H/N patients. In the inverted cases, we found an average fat fraction of 56% for the brain patients and 41% for the H/N patients. The effect of the simulated tissue inversion in the brain studies was clearly seen on AC-PET images. The percent-difference image revealed a radial error where the largest difference was at the ventricles (30%\u2009\u00b1\u20093%) and smallest at the cortical region (10%\u2009\u00b1\u20092%).\nCONCLUSIONS: Tissue inversion in Dixon MRI is well known and can occur when there is an error in the off-resonance correction method. Tissue inversion needs to be considered if, based on Dixon-AC, the construction of normal PET databases is performed or any quantitative physiological parameters are fitted. Visual inspection is needed if Dixon-AC is to be used in clinical routine.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s40658-014-0101-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1051885", 
            "issn": [
              "2197-7364"
            ], 
            "name": "EJNMMI Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "name": "Impact of incorrect tissue classification in Dixon-based MR-AC: fat-water tissue inversion", 
        "pagination": "101", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ede2a6cb82708a353fa0543852b3f642cd6a9f4fcb56700da106254b92c03939"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26501459"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101658952"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40658-014-0101-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049937272"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40658-014-0101-0", 
          "https://app.dimensions.ai/details/publication/pub.1049937272"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88222_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fs40658-014-0101-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40658-014-0101-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40658-014-0101-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40658-014-0101-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40658-014-0101-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    187 TRIPLES      21 PREDICATES      43 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40658-014-0101-0 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author Ndafbb6394db347cc810ed0e3c1763a1b
    4 schema:citation sg:pub.10.1007/978-3-642-40692-8_2
    5 sg:pub.10.1007/s00259-010-1603-1
    6 sg:pub.10.1007/s00259-012-2316-4
    7 sg:pub.10.1007/s00259-013-2652-z
    8 sg:pub.10.1007/s10334-012-0345-4
    9 https://doi.org/10.1002/jmri.21492
    10 https://doi.org/10.1002/mrm.1910380606
    11 https://doi.org/10.1016/j.neuroimage.2013.08.042
    12 https://doi.org/10.1097/00004728-197903060-00018
    13 https://doi.org/10.1148/radiology.153.1.6089263
    14 https://doi.org/10.2967/jnumed.108.054726
    15 https://doi.org/10.2967/jnumed.108.057307
    16 https://doi.org/10.2967/jnumed.111.092726
    17 https://doi.org/10.2967/jnumed.113.126813
    18 schema:datePublished 2014-12
    19 schema:datePublishedReg 2014-12-01
    20 schema:description BACKGROUND: The current MR-based attenuation correction (AC) used in combined PET/MR systems computes a Dixon attenuation map (MR-ACDixon) based on fat and water images derived from in- and opposed-phase MRI. We observed an occasional fat/water inversion in MR-ACDixon. The aim of our study was to estimate the prevalence of this phenomenon in a large patient cohort and assess the possible bias on PET data. METHODS: PET/MRI was performed on a Siemens Biograph mMR (Siemens AG, Erlangen, Germany). We visually inspected attenuation maps of 283 brain or head/neck (H/N) patients, classified them as non-inverted or inverted, and calculated the fat/water tissue fraction. We selected ten FDG-PET brain patients with non-inverted attenuation maps for further analysis. Tissue inversion was simulated, and PET images were reconstructed using both original and inverted attenuation maps. The FDG-PET images of the ten brain patients were analyzed using 11 concentric annulus regions of 5 mm width placed over a central transaxial image plane traversing PETDixon. RESULTS: Out of the 283 patients, a fat/water inversion in 23 patients (8.1%) was observed. The average fraction of fat in the correct MR-ACDixon was 13% for brain and 17% for H/N patients. In the inverted cases, we found an average fat fraction of 56% for the brain patients and 41% for the H/N patients. The effect of the simulated tissue inversion in the brain studies was clearly seen on AC-PET images. The percent-difference image revealed a radial error where the largest difference was at the ventricles (30% ± 3%) and smallest at the cortical region (10% ± 2%). CONCLUSIONS: Tissue inversion in Dixon MRI is well known and can occur when there is an error in the off-resonance correction method. Tissue inversion needs to be considered if, based on Dixon-AC, the construction of normal PET databases is performed or any quantitative physiological parameters are fitted. Visual inspection is needed if Dixon-AC is to be used in clinical routine.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N7444dfef92584c1fa5894154f8a5f64a
    25 N83c717ceacc74d1a9d0cc8628d5c6e0d
    26 sg:journal.1051885
    27 schema:name Impact of incorrect tissue classification in Dixon-based MR-AC: fat-water tissue inversion
    28 schema:pagination 101
    29 schema:productId N344d6cae75b148ccbaa7d0d0ae9810c2
    30 N568e2d858d8e40cfaabed75398f39911
    31 N66fc6ab85d17408086900058ac9a0cc8
    32 Nb24c06a584d94b7792affea9a714deb4
    33 Nf900b5019aa8445fbd09bcfc0a3c343c
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049937272
    35 https://doi.org/10.1186/s40658-014-0101-0
    36 schema:sdDatePublished 2019-04-11T13:07
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N32712fa1cd0a4515ad8fbc31de850f96
    39 schema:url http://link.springer.com/10.1186%2Fs40658-014-0101-0
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N05327113e0ea4b488c77429d00363590 rdf:first sg:person.0657742114.07
    44 rdf:rest Nbf63d39ae75548e983c25320acbca2f6
    45 N13ac37963c514dfeb677bec8afd53288 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
    46 rdf:type schema:Organization
    47 N197d8c5e952245bf815cb9e0063668d1 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
    48 rdf:type schema:Organization
    49 N2652325d32fa44b185e8f3c3bd1b7216 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
    50 rdf:type schema:Organization
    51 N32712fa1cd0a4515ad8fbc31de850f96 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N344d6cae75b148ccbaa7d0d0ae9810c2 schema:name nlm_unique_id
    54 schema:value 101658952
    55 rdf:type schema:PropertyValue
    56 N51904f21fc0142998050139f9b9362e2 rdf:first sg:person.0721611050.41
    57 rdf:rest N05327113e0ea4b488c77429d00363590
    58 N551f76b34e894dc1aed986cb4d1f74e8 rdf:first sg:person.0742142346.96
    59 rdf:rest N8836ca1e4f144247b66c7053d8a0c5ab
    60 N568e2d858d8e40cfaabed75398f39911 schema:name dimensions_id
    61 schema:value pub.1049937272
    62 rdf:type schema:PropertyValue
    63 N66e081e31ee8481393867853cb66e11b schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
    64 rdf:type schema:Organization
    65 N66fc6ab85d17408086900058ac9a0cc8 schema:name doi
    66 schema:value 10.1186/s40658-014-0101-0
    67 rdf:type schema:PropertyValue
    68 N7444dfef92584c1fa5894154f8a5f64a schema:volumeNumber 1
    69 rdf:type schema:PublicationVolume
    70 N83c717ceacc74d1a9d0cc8628d5c6e0d schema:issueNumber 1
    71 rdf:type schema:PublicationIssue
    72 N8836ca1e4f144247b66c7053d8a0c5ab rdf:first sg:person.0705734737.91
    73 rdf:rest Nb2f3a0a468364f3a9742870287bff4a1
    74 Nb24c06a584d94b7792affea9a714deb4 schema:name pubmed_id
    75 schema:value 26501459
    76 rdf:type schema:PropertyValue
    77 Nb2f3a0a468364f3a9742870287bff4a1 rdf:first sg:person.0740340304.66
    78 rdf:rest N51904f21fc0142998050139f9b9362e2
    79 Nbee4a6858a43411098344b7ea4c7110d rdf:first sg:person.0717736532.87
    80 rdf:rest rdf:nil
    81 Nbf63d39ae75548e983c25320acbca2f6 rdf:first sg:person.0715465121.32
    82 rdf:rest Nf0fde9d76df94fc8a72f87d7e122d191
    83 Ncdb623c2068b423a802e8dd358f39262 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
    84 rdf:type schema:Organization
    85 Ndafbb6394db347cc810ed0e3c1763a1b rdf:first sg:person.01316451111.03
    86 rdf:rest N551f76b34e894dc1aed986cb4d1f74e8
    87 Nec19f179011947619a5b5c7a678b4bf6 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
    88 rdf:type schema:Organization
    89 Nf0fde9d76df94fc8a72f87d7e122d191 rdf:first sg:person.01250424037.22
    90 rdf:rest Nbee4a6858a43411098344b7ea4c7110d
    91 Nf900b5019aa8445fbd09bcfc0a3c343c schema:name readcube_id
    92 schema:value ede2a6cb82708a353fa0543852b3f642cd6a9f4fcb56700da106254b92c03939
    93 rdf:type schema:PropertyValue
    94 Nf9405a7448ce4e85a7bd6e5681533e0f schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
    95 rdf:type schema:Organization
    96 Nff68ed1c495747618c251ab776ac00bb schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
    97 rdf:type schema:Organization
    98 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Medical and Health Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Clinical Sciences
    103 rdf:type schema:DefinedTerm
    104 sg:journal.1051885 schema:issn 2197-7364
    105 schema:name EJNMMI Physics
    106 rdf:type schema:Periodical
    107 sg:person.01250424037.22 schema:affiliation Ncdb623c2068b423a802e8dd358f39262
    108 schema:familyName Kjær
    109 schema:givenName Andreas
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250424037.22
    111 rdf:type schema:Person
    112 sg:person.01316451111.03 schema:affiliation Nff68ed1c495747618c251ab776ac00bb
    113 schema:familyName Ladefoged
    114 schema:givenName Claes Nøhr
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316451111.03
    116 rdf:type schema:Person
    117 sg:person.0657742114.07 schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
    118 schema:familyName Beyer
    119 schema:givenName Thomas
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657742114.07
    121 rdf:type schema:Person
    122 sg:person.0705734737.91 schema:affiliation N197d8c5e952245bf815cb9e0063668d1
    123 schema:familyName Keller
    124 schema:givenName Sune Høgild
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705734737.91
    126 rdf:type schema:Person
    127 sg:person.0715465121.32 schema:affiliation N13ac37963c514dfeb677bec8afd53288
    128 schema:familyName Højgaard
    129 schema:givenName Liselotte
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715465121.32
    131 rdf:type schema:Person
    132 sg:person.0717736532.87 schema:affiliation N66e081e31ee8481393867853cb66e11b
    133 schema:familyName Andersen
    134 schema:givenName Flemming Littrup
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717736532.87
    136 rdf:type schema:Person
    137 sg:person.0721611050.41 schema:affiliation Nf9405a7448ce4e85a7bd6e5681533e0f
    138 schema:familyName Law
    139 schema:givenName Ian
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721611050.41
    141 rdf:type schema:Person
    142 sg:person.0740340304.66 schema:affiliation N2652325d32fa44b185e8f3c3bd1b7216
    143 schema:familyName Holm
    144 schema:givenName Søren
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740340304.66
    146 rdf:type schema:Person
    147 sg:person.0742142346.96 schema:affiliation Nec19f179011947619a5b5c7a678b4bf6
    148 schema:familyName Hansen
    149 schema:givenName Adam Espe
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742142346.96
    151 rdf:type schema:Person
    152 sg:pub.10.1007/978-3-642-40692-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026181851
    153 https://doi.org/10.1007/978-3-642-40692-8_2
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s00259-010-1603-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032254809
    156 https://doi.org/10.1007/s00259-010-1603-1
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s00259-012-2316-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020497590
    159 https://doi.org/10.1007/s00259-012-2316-4
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s00259-013-2652-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005326418
    162 https://doi.org/10.1007/s00259-013-2652-z
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s10334-012-0345-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034224250
    165 https://doi.org/10.1007/s10334-012-0345-4
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1002/jmri.21492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037832968
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1002/mrm.1910380606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039674148
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.neuroimage.2013.08.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016265594
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1097/00004728-197903060-00018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044090430
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1148/radiology.153.1.6089263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081561244
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.2967/jnumed.108.054726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013636390
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.2967/jnumed.108.057307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009233958
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.2967/jnumed.111.092726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019167583
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.2967/jnumed.113.126813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012895501
    184 rdf:type schema:CreativeWork
    185 https://www.grid.ac/institutes/grid.22937.3d schema:alternateName Medical University of Vienna
    186 schema:name Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20/4L, A-1090, Vienna, Austria
    187 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...