Impact of incorrect tissue classification in Dixon-based MR-AC: fat-water tissue inversion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Claes Nøhr Ladefoged, Adam Espe Hansen, Sune Høgild Keller, Søren Holm, Ian Law, Thomas Beyer, Liselotte Højgaard, Andreas Kjær, Flemming Littrup Andersen

ABSTRACT

BACKGROUND: The current MR-based attenuation correction (AC) used in combined PET/MR systems computes a Dixon attenuation map (MR-ACDixon) based on fat and water images derived from in- and opposed-phase MRI. We observed an occasional fat/water inversion in MR-ACDixon. The aim of our study was to estimate the prevalence of this phenomenon in a large patient cohort and assess the possible bias on PET data. METHODS: PET/MRI was performed on a Siemens Biograph mMR (Siemens AG, Erlangen, Germany). We visually inspected attenuation maps of 283 brain or head/neck (H/N) patients, classified them as non-inverted or inverted, and calculated the fat/water tissue fraction. We selected ten FDG-PET brain patients with non-inverted attenuation maps for further analysis. Tissue inversion was simulated, and PET images were reconstructed using both original and inverted attenuation maps. The FDG-PET images of the ten brain patients were analyzed using 11 concentric annulus regions of 5 mm width placed over a central transaxial image plane traversing PETDixon. RESULTS: Out of the 283 patients, a fat/water inversion in 23 patients (8.1%) was observed. The average fraction of fat in the correct MR-ACDixon was 13% for brain and 17% for H/N patients. In the inverted cases, we found an average fat fraction of 56% for the brain patients and 41% for the H/N patients. The effect of the simulated tissue inversion in the brain studies was clearly seen on AC-PET images. The percent-difference image revealed a radial error where the largest difference was at the ventricles (30% ± 3%) and smallest at the cortical region (10% ± 2%). CONCLUSIONS: Tissue inversion in Dixon MRI is well known and can occur when there is an error in the off-resonance correction method. Tissue inversion needs to be considered if, based on Dixon-AC, the construction of normal PET databases is performed or any quantitative physiological parameters are fitted. Visual inspection is needed if Dixon-AC is to be used in clinical routine. More... »

PAGES

101

References to SciGraph publications

Journal

TITLE

EJNMMI Physics

ISSUE

1

VOLUME

1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40658-014-0101-0

DOI

http://dx.doi.org/10.1186/s40658-014-0101-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049937272

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26501459


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ladefoged", 
        "givenName": "Claes N\u00f8hr", 
        "id": "sg:person.01316451111.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316451111.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hansen", 
        "givenName": "Adam Espe", 
        "id": "sg:person.0742142346.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742142346.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keller", 
        "givenName": "Sune H\u00f8gild", 
        "id": "sg:person.0705734737.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705734737.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holm", 
        "givenName": "S\u00f8ren", 
        "id": "sg:person.0740340304.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740340304.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Law", 
        "givenName": "Ian", 
        "id": "sg:person.0721611050.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721611050.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20/4L, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beyer", 
        "givenName": "Thomas", 
        "id": "sg:person.0657742114.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657742114.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f8jgaard", 
        "givenName": "Liselotte", 
        "id": "sg:person.0715465121.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715465121.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kj\u00e6r", 
        "givenName": "Andreas", 
        "id": "sg:person.01250424037.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250424037.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andersen", 
        "givenName": "Flemming Littrup", 
        "id": "sg:person.0717736532.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717736532.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00259-013-2652-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005326418", 
          "https://doi.org/10.1007/s00259-013-2652-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.057307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009233958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.113.126813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012895501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.054726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013636390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.08.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016265594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.092726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019167583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-012-2316-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020497590", 
          "https://doi.org/10.1007/s00259-012-2316-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40692-8_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026181851", 
          "https://doi.org/10.1007/978-3-642-40692-8_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1603-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032254809", 
          "https://doi.org/10.1007/s00259-010-1603-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1603-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032254809", 
          "https://doi.org/10.1007/s00259-010-1603-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-012-0345-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034224250", 
          "https://doi.org/10.1007/s10334-012-0345-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037832968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910380606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039674148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-197903060-00018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044090430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-197903060-00018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044090430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.153.1.6089263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081561244"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: The current MR-based attenuation correction (AC) used in combined PET/MR systems computes a Dixon attenuation map (MR-ACDixon) based on fat and water images derived from in- and opposed-phase MRI. We observed an occasional fat/water inversion in MR-ACDixon. The aim of our study was to estimate the prevalence of this phenomenon in a large patient cohort and assess the possible bias on PET data.\nMETHODS: PET/MRI was performed on a Siemens Biograph mMR (Siemens AG, Erlangen, Germany). We visually inspected attenuation maps of 283 brain or head/neck (H/N) patients, classified them as non-inverted or inverted, and calculated the fat/water tissue fraction. We selected ten FDG-PET brain patients with non-inverted attenuation maps for further analysis. Tissue inversion was simulated, and PET images were reconstructed using both original and inverted attenuation maps. The FDG-PET images of the ten brain patients were analyzed using 11 concentric annulus regions of 5 mm width placed over a central transaxial image plane traversing PETDixon.\nRESULTS: Out of the 283 patients, a fat/water inversion in 23 patients (8.1%) was observed. The average fraction of fat in the correct MR-ACDixon was 13% for brain and 17% for H/N patients. In the inverted cases, we found an average fat fraction of 56% for the brain patients and 41% for the H/N patients. The effect of the simulated tissue inversion in the brain studies was clearly seen on AC-PET images. The percent-difference image revealed a radial error where the largest difference was at the ventricles (30%\u2009\u00b1\u20093%) and smallest at the cortical region (10%\u2009\u00b1\u20092%).\nCONCLUSIONS: Tissue inversion in Dixon MRI is well known and can occur when there is an error in the off-resonance correction method. Tissue inversion needs to be considered if, based on Dixon-AC, the construction of normal PET databases is performed or any quantitative physiological parameters are fitted. Visual inspection is needed if Dixon-AC is to be used in clinical routine.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40658-014-0101-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1051885", 
        "issn": [
          "2197-7364"
        ], 
        "name": "EJNMMI Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Impact of incorrect tissue classification in Dixon-based MR-AC: fat-water tissue inversion", 
    "pagination": "101", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ede2a6cb82708a353fa0543852b3f642cd6a9f4fcb56700da106254b92c03939"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26501459"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101658952"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40658-014-0101-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049937272"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40658-014-0101-0", 
      "https://app.dimensions.ai/details/publication/pub.1049937272"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88222_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs40658-014-0101-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40658-014-0101-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40658-014-0101-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40658-014-0101-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40658-014-0101-0'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      43 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40658-014-0101-0 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nb9b20cee10ac4da194ca38d7e7dfb0a1
4 schema:citation sg:pub.10.1007/978-3-642-40692-8_2
5 sg:pub.10.1007/s00259-010-1603-1
6 sg:pub.10.1007/s00259-012-2316-4
7 sg:pub.10.1007/s00259-013-2652-z
8 sg:pub.10.1007/s10334-012-0345-4
9 https://doi.org/10.1002/jmri.21492
10 https://doi.org/10.1002/mrm.1910380606
11 https://doi.org/10.1016/j.neuroimage.2013.08.042
12 https://doi.org/10.1097/00004728-197903060-00018
13 https://doi.org/10.1148/radiology.153.1.6089263
14 https://doi.org/10.2967/jnumed.108.054726
15 https://doi.org/10.2967/jnumed.108.057307
16 https://doi.org/10.2967/jnumed.111.092726
17 https://doi.org/10.2967/jnumed.113.126813
18 schema:datePublished 2014-12
19 schema:datePublishedReg 2014-12-01
20 schema:description BACKGROUND: The current MR-based attenuation correction (AC) used in combined PET/MR systems computes a Dixon attenuation map (MR-ACDixon) based on fat and water images derived from in- and opposed-phase MRI. We observed an occasional fat/water inversion in MR-ACDixon. The aim of our study was to estimate the prevalence of this phenomenon in a large patient cohort and assess the possible bias on PET data. METHODS: PET/MRI was performed on a Siemens Biograph mMR (Siemens AG, Erlangen, Germany). We visually inspected attenuation maps of 283 brain or head/neck (H/N) patients, classified them as non-inverted or inverted, and calculated the fat/water tissue fraction. We selected ten FDG-PET brain patients with non-inverted attenuation maps for further analysis. Tissue inversion was simulated, and PET images were reconstructed using both original and inverted attenuation maps. The FDG-PET images of the ten brain patients were analyzed using 11 concentric annulus regions of 5 mm width placed over a central transaxial image plane traversing PETDixon. RESULTS: Out of the 283 patients, a fat/water inversion in 23 patients (8.1%) was observed. The average fraction of fat in the correct MR-ACDixon was 13% for brain and 17% for H/N patients. In the inverted cases, we found an average fat fraction of 56% for the brain patients and 41% for the H/N patients. The effect of the simulated tissue inversion in the brain studies was clearly seen on AC-PET images. The percent-difference image revealed a radial error where the largest difference was at the ventricles (30% ± 3%) and smallest at the cortical region (10% ± 2%). CONCLUSIONS: Tissue inversion in Dixon MRI is well known and can occur when there is an error in the off-resonance correction method. Tissue inversion needs to be considered if, based on Dixon-AC, the construction of normal PET databases is performed or any quantitative physiological parameters are fitted. Visual inspection is needed if Dixon-AC is to be used in clinical routine.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N99af981648194ac19476c2dba16f33e0
25 Nd1762a2c77c64ae78fe9aefdb611bc63
26 sg:journal.1051885
27 schema:name Impact of incorrect tissue classification in Dixon-based MR-AC: fat-water tissue inversion
28 schema:pagination 101
29 schema:productId N255e2d02000c4ed9bafb6ffa819de056
30 N2f8d9cb192f14551bdd33ce7fe3a833e
31 N51de7a4adad143aeb8c3cc34e0168710
32 N7f993673fca44add8c2450cf65c95aa5
33 Nea0bf7bdf72a45bea7c60cf31c01a616
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049937272
35 https://doi.org/10.1186/s40658-014-0101-0
36 schema:sdDatePublished 2019-04-11T13:07
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nfd838f7ea6ec46d1bd9de8a79771ec44
39 schema:url http://link.springer.com/10.1186%2Fs40658-014-0101-0
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N00d9a9138f5342ebb8b2d3058a5f89cb schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
44 rdf:type schema:Organization
45 N06962b229ba1436a8c3e6b5549d2db98 rdf:first sg:person.0721611050.41
46 rdf:rest Nf6d441264f514fad88bc92ced14015cf
47 N14d7159bf2374999b67e58646fb41ac6 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
48 rdf:type schema:Organization
49 N255e2d02000c4ed9bafb6ffa819de056 schema:name doi
50 schema:value 10.1186/s40658-014-0101-0
51 rdf:type schema:PropertyValue
52 N2f8d9cb192f14551bdd33ce7fe3a833e schema:name readcube_id
53 schema:value ede2a6cb82708a353fa0543852b3f642cd6a9f4fcb56700da106254b92c03939
54 rdf:type schema:PropertyValue
55 N3a177a4546994282ae38528cd823e204 rdf:first sg:person.0715465121.32
56 rdf:rest Nbc78eaa081c8430aa549781d30fd5397
57 N3fa7f12206c548b5879891611e98610a schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
58 rdf:type schema:Organization
59 N4c5de9153f4c42bcbf6a78c5f1a05466 rdf:first sg:person.0742142346.96
60 rdf:rest Nf383a542011045aebf9799aea1be7690
61 N51de7a4adad143aeb8c3cc34e0168710 schema:name dimensions_id
62 schema:value pub.1049937272
63 rdf:type schema:PropertyValue
64 N563c72046ae1454999cb0dee2a9588ba schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
65 rdf:type schema:Organization
66 N5c46af6717914c8f902fd1272bd7a7ac schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
67 rdf:type schema:Organization
68 N7f993673fca44add8c2450cf65c95aa5 schema:name nlm_unique_id
69 schema:value 101658952
70 rdf:type schema:PropertyValue
71 N99af981648194ac19476c2dba16f33e0 schema:volumeNumber 1
72 rdf:type schema:PublicationVolume
73 Nb9b20cee10ac4da194ca38d7e7dfb0a1 rdf:first sg:person.01316451111.03
74 rdf:rest N4c5de9153f4c42bcbf6a78c5f1a05466
75 Nbc78eaa081c8430aa549781d30fd5397 rdf:first sg:person.01250424037.22
76 rdf:rest Nc202a68f27154b81aa19ca02adaf9a4f
77 Nc202a68f27154b81aa19ca02adaf9a4f rdf:first sg:person.0717736532.87
78 rdf:rest rdf:nil
79 Ncb9ea27b0cf544bc9ce185958008c985 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
80 rdf:type schema:Organization
81 Ncbd81e50f67a469faa801853e8a43d9f rdf:first sg:person.0740340304.66
82 rdf:rest N06962b229ba1436a8c3e6b5549d2db98
83 Nd1762a2c77c64ae78fe9aefdb611bc63 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 Nd9faed8de6274a58843dfadd908936f4 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
86 rdf:type schema:Organization
87 Nea0bf7bdf72a45bea7c60cf31c01a616 schema:name pubmed_id
88 schema:value 26501459
89 rdf:type schema:PropertyValue
90 Nf383a542011045aebf9799aea1be7690 rdf:first sg:person.0705734737.91
91 rdf:rest Ncbd81e50f67a469faa801853e8a43d9f
92 Nf6d441264f514fad88bc92ced14015cf rdf:first sg:person.0657742114.07
93 rdf:rest N3a177a4546994282ae38528cd823e204
94 Nf7b64ed8d47348f69052bc434258ea41 schema:name Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
95 rdf:type schema:Organization
96 Nfd838f7ea6ec46d1bd9de8a79771ec44 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
99 schema:name Medical and Health Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
102 schema:name Clinical Sciences
103 rdf:type schema:DefinedTerm
104 sg:journal.1051885 schema:issn 2197-7364
105 schema:name EJNMMI Physics
106 rdf:type schema:Periodical
107 sg:person.01250424037.22 schema:affiliation Nf7b64ed8d47348f69052bc434258ea41
108 schema:familyName Kjær
109 schema:givenName Andreas
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250424037.22
111 rdf:type schema:Person
112 sg:person.01316451111.03 schema:affiliation Ncb9ea27b0cf544bc9ce185958008c985
113 schema:familyName Ladefoged
114 schema:givenName Claes Nøhr
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316451111.03
116 rdf:type schema:Person
117 sg:person.0657742114.07 schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
118 schema:familyName Beyer
119 schema:givenName Thomas
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657742114.07
121 rdf:type schema:Person
122 sg:person.0705734737.91 schema:affiliation N14d7159bf2374999b67e58646fb41ac6
123 schema:familyName Keller
124 schema:givenName Sune Høgild
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705734737.91
126 rdf:type schema:Person
127 sg:person.0715465121.32 schema:affiliation N00d9a9138f5342ebb8b2d3058a5f89cb
128 schema:familyName Højgaard
129 schema:givenName Liselotte
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715465121.32
131 rdf:type schema:Person
132 sg:person.0717736532.87 schema:affiliation Nd9faed8de6274a58843dfadd908936f4
133 schema:familyName Andersen
134 schema:givenName Flemming Littrup
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717736532.87
136 rdf:type schema:Person
137 sg:person.0721611050.41 schema:affiliation N3fa7f12206c548b5879891611e98610a
138 schema:familyName Law
139 schema:givenName Ian
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721611050.41
141 rdf:type schema:Person
142 sg:person.0740340304.66 schema:affiliation N563c72046ae1454999cb0dee2a9588ba
143 schema:familyName Holm
144 schema:givenName Søren
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740340304.66
146 rdf:type schema:Person
147 sg:person.0742142346.96 schema:affiliation N5c46af6717914c8f902fd1272bd7a7ac
148 schema:familyName Hansen
149 schema:givenName Adam Espe
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742142346.96
151 rdf:type schema:Person
152 sg:pub.10.1007/978-3-642-40692-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026181851
153 https://doi.org/10.1007/978-3-642-40692-8_2
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s00259-010-1603-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032254809
156 https://doi.org/10.1007/s00259-010-1603-1
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s00259-012-2316-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020497590
159 https://doi.org/10.1007/s00259-012-2316-4
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s00259-013-2652-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005326418
162 https://doi.org/10.1007/s00259-013-2652-z
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s10334-012-0345-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034224250
165 https://doi.org/10.1007/s10334-012-0345-4
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/jmri.21492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037832968
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/mrm.1910380606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039674148
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.neuroimage.2013.08.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016265594
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1097/00004728-197903060-00018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044090430
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1148/radiology.153.1.6089263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081561244
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2967/jnumed.108.054726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013636390
178 rdf:type schema:CreativeWork
179 https://doi.org/10.2967/jnumed.108.057307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009233958
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2967/jnumed.111.092726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019167583
182 rdf:type schema:CreativeWork
183 https://doi.org/10.2967/jnumed.113.126813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012895501
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.22937.3d schema:alternateName Medical University of Vienna
186 schema:name Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20/4L, A-1090, Vienna, Austria
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...