Wintering Swan Geese maximize energy intake through substrate foraging depth when feeding on buried Vallisneria natans tubers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yan Chen, Yong Zhang, Lei Cao, Willem F. de Boer, Anthony D. Fox

ABSTRACT

Foraging theory predicts that animals select patches that offer the highest net rate of energy gain. Hence, prey distribution patterns and spatiotemporal heterogeneity play important roles in determining animal feeding patch selection. For waterfowl foraging on buried aquatic plant tubers, the distribution and biomass of these plant organs vary with depth in the substrate. Since excavation costs also increase with depth, the energy intake of the animals foraging on these plants is highly sediment depth dependent. Here, using observations of Swan Geese (Anser cygnoides) foraging on Vallisneria natans tubers, we test our hypothesis that geese feeding on tubers buried at intermediate sediment depth maximize their daily energy intake because of the interaction between tuber size and abundance with depth. To do this, we measured the distribution patterns of buried Vallisneria tubers under both undisturbed conditions and post-exploitation by geese (i.e. giving-up conditions). We investigated the relationship between tuber size and burial depth, and total tuber biomass within each sediment layer in undisturbed and exploited plots. Finally, we compared modelled Swan Goose daily energy intake feeding on Vallisneria tubers buried at different sediment layers (1–10, 11–20 and 21–30 cm below the surface). Dry weight of Vallisneria tubers linearly increased with burial depth, while average total dry weight density of tubers showed a unimodal relationship, peaking at intermediate levels. Not surprisingly, Swan Geese foraged most intensively on tubers buried at intermediate sediment depths, where they maximize their daily energy intake. Our results support our hypothesis that Swan Geese feeding on tubers at intermediate depths maximize their daily energy intake. Our study is the first to quantify foraging strategies of Swan Geese during the wintering period, emphasizing the importance of plant traits on foraging selection of belowground foragers. More... »

PAGES

6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40657-019-0145-x

DOI

http://dx.doi.org/10.1186/s40657-019-0145-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112385876


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.410625.4", 
          "name": [
            "Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 210037, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Research Center for Eco-Environmental Science, Chinese Academic of Sciences, 18 Shuangqing Road, 100085, Beijing, China", 
            "University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Lei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Resource Ecology Group, Wageningen University, Droevendaalsesteeg3a, 6708 PB, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Boer", 
        "givenName": "Willem F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Bioscience, Aarhus University, Kal\u00f8, Gren\u00e5vej 14, 8410, R\u00f8nde, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fox", 
        "givenName": "Anthony D.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1365-2656.2009.01556.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000583815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2656.2009.01556.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000583815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3770(86)90059-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004628724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3770(86)90059-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004628724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ppees.2007.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005841154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9615(2002)072[0095:pfrdbh]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013619843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aquabot.2008.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015488765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/rec.12477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015574942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0959270910000201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015818117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aqc.1154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016068856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1440-1703.1998.00247.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018459907", 
          "https://doi.org/10.1046/j.1440-1703.1998.00247.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1440-1703.1998.00247.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018459907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.es.15.110184.002515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018624585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2656.1999.00335.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018868828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aquabot.2013.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020935037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/oik.01881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021624626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2656.2006.01150.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021662408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.baae.2011.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024193210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/04-1335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025420802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-74542-3_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026670884", 
          "https://doi.org/10.1007/978-3-642-74542-3_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2745.2001.00668.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028347331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10336-013-0934-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031952776", 
          "https://doi.org/10.1007/s10336-013-0934-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10336-013-0934-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031952776", 
          "https://doi.org/10.1007/s10336-013-0934-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10750-007-0598-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038705231", 
          "https://doi.org/10.1007/s10750-007-0598-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ibi.12039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040021070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1600-0706.2000.890207.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041588737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-5809(76)90040-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042594464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0021-8901.2004.00923.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042665104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biocon.2008.06.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042963603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-5347(92)90009-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047734576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aob/mcr276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048194950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9658(1999)080[2338:wcdiit]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052519315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1600-0706.2003.12114.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052790825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00323486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052949061", 
          "https://doi.org/10.1007/bf00323486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2656.2001.00496.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056736278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/282454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058592577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/282455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058592578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/675759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058858095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1936082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069660151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2389936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069906184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3799903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070456651"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Foraging theory predicts that animals select patches that offer the highest net rate of energy gain. Hence, prey distribution patterns and spatiotemporal heterogeneity play important roles in determining animal feeding patch selection. For waterfowl foraging on buried aquatic plant tubers, the distribution and biomass of these plant organs vary with depth in the substrate. Since excavation costs also increase with depth, the energy intake of the animals foraging on these plants is highly sediment depth dependent. Here, using observations of Swan Geese (Anser cygnoides) foraging on Vallisneria natans tubers, we test our hypothesis that geese feeding on tubers buried at intermediate sediment depth maximize their daily energy intake because of the interaction between tuber size and abundance with depth. To do this, we measured the distribution patterns of buried Vallisneria tubers under both undisturbed conditions and post-exploitation by geese (i.e. giving-up conditions). We investigated the relationship between tuber size and burial depth, and total tuber biomass within each sediment layer in undisturbed and exploited plots. Finally, we compared modelled Swan Goose daily energy intake feeding on Vallisneria tubers buried at different sediment layers (1\u201310, 11\u201320 and 21\u201330 cm below the surface). Dry weight of Vallisneria tubers linearly increased with burial depth, while average total dry weight density of tubers showed a unimodal relationship, peaking at intermediate levels. Not surprisingly, Swan Geese foraged most intensively on tubers buried at intermediate sediment depths, where they maximize their daily energy intake. Our results support our hypothesis that Swan Geese feeding on tubers at intermediate depths maximize their daily energy intake. Our study is the first to quantify foraging strategies of Swan Geese during the wintering period, emphasizing the importance of plant traits on foraging selection of belowground foragers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40657-019-0145-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1050987", 
        "issn": [
          "1674-7674", 
          "2053-7166"
        ], 
        "name": "Avian Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Wintering Swan Geese maximize energy intake through substrate foraging depth when feeding on buried Vallisneria natans tubers", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cf058f713b2233499d3690951d177410db6aef283e1fa1ebb725bad93803ba33"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40657-019-0145-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112385876"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40657-019-0145-x", 
      "https://app.dimensions.ai/details/publication/pub.1112385876"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89824_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40657-019-0145-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40657-019-0145-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40657-019-0145-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40657-019-0145-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40657-019-0145-x'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40657-019-0145-x schema:about anzsrc-for:06
2 anzsrc-for:0602
3 schema:author N0a8f8abe7e8349548de40f631e69b784
4 schema:citation sg:pub.10.1007/978-3-642-74542-3_22
5 sg:pub.10.1007/bf00323486
6 sg:pub.10.1007/s10336-013-0934-7
7 sg:pub.10.1007/s10750-007-0598-5
8 sg:pub.10.1046/j.1440-1703.1998.00247.x
9 https://doi.org/10.1002/aqc.1154
10 https://doi.org/10.1016/0040-5809(76)90040-x
11 https://doi.org/10.1016/0169-5347(92)90009-z
12 https://doi.org/10.1016/0304-3770(86)90059-8
13 https://doi.org/10.1016/j.aquabot.2008.12.001
14 https://doi.org/10.1016/j.aquabot.2013.01.004
15 https://doi.org/10.1016/j.baae.2011.11.002
16 https://doi.org/10.1016/j.biocon.2008.06.022
17 https://doi.org/10.1016/j.ppees.2007.01.001
18 https://doi.org/10.1017/s0959270910000201
19 https://doi.org/10.1034/j.1600-0706.2000.890207.x
20 https://doi.org/10.1034/j.1600-0706.2003.12114.x
21 https://doi.org/10.1046/j.1365-2656.1999.00335.x
22 https://doi.org/10.1046/j.1365-2656.2001.00496.x
23 https://doi.org/10.1046/j.1365-2745.2001.00668.x
24 https://doi.org/10.1046/j.1440-1703.1998.00247.x
25 https://doi.org/10.1086/282454
26 https://doi.org/10.1086/282455
27 https://doi.org/10.1086/675759
28 https://doi.org/10.1093/aob/mcr276
29 https://doi.org/10.1111/ibi.12039
30 https://doi.org/10.1111/j.0021-8901.2004.00923.x
31 https://doi.org/10.1111/j.1365-2656.2006.01150.x
32 https://doi.org/10.1111/j.1365-2656.2009.01556.x
33 https://doi.org/10.1111/oik.01881
34 https://doi.org/10.1111/rec.12477
35 https://doi.org/10.1146/annurev.es.15.110184.002515
36 https://doi.org/10.1890/0012-9615(2002)072[0095:pfrdbh]2.0.co;2
37 https://doi.org/10.1890/0012-9658(1999)080[2338:wcdiit]2.0.co;2
38 https://doi.org/10.1890/04-1335
39 https://doi.org/10.2307/1936082
40 https://doi.org/10.2307/2389936
41 https://doi.org/10.2307/3799903
42 schema:datePublished 2019-12
43 schema:datePublishedReg 2019-12-01
44 schema:description Foraging theory predicts that animals select patches that offer the highest net rate of energy gain. Hence, prey distribution patterns and spatiotemporal heterogeneity play important roles in determining animal feeding patch selection. For waterfowl foraging on buried aquatic plant tubers, the distribution and biomass of these plant organs vary with depth in the substrate. Since excavation costs also increase with depth, the energy intake of the animals foraging on these plants is highly sediment depth dependent. Here, using observations of Swan Geese (Anser cygnoides) foraging on Vallisneria natans tubers, we test our hypothesis that geese feeding on tubers buried at intermediate sediment depth maximize their daily energy intake because of the interaction between tuber size and abundance with depth. To do this, we measured the distribution patterns of buried Vallisneria tubers under both undisturbed conditions and post-exploitation by geese (i.e. giving-up conditions). We investigated the relationship between tuber size and burial depth, and total tuber biomass within each sediment layer in undisturbed and exploited plots. Finally, we compared modelled Swan Goose daily energy intake feeding on Vallisneria tubers buried at different sediment layers (1–10, 11–20 and 21–30 cm below the surface). Dry weight of Vallisneria tubers linearly increased with burial depth, while average total dry weight density of tubers showed a unimodal relationship, peaking at intermediate levels. Not surprisingly, Swan Geese foraged most intensively on tubers buried at intermediate sediment depths, where they maximize their daily energy intake. Our results support our hypothesis that Swan Geese feeding on tubers at intermediate depths maximize their daily energy intake. Our study is the first to quantify foraging strategies of Swan Geese during the wintering period, emphasizing the importance of plant traits on foraging selection of belowground foragers.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N32ca7d015293447f9d7593506c710ed1
49 N850281de539846ee8ddcab04c96679a7
50 sg:journal.1050987
51 schema:name Wintering Swan Geese maximize energy intake through substrate foraging depth when feeding on buried Vallisneria natans tubers
52 schema:pagination 6
53 schema:productId N880e9ac96294499cb1d434387ce49c66
54 N953eb08801d64f15b1f07b46eff9efa4
55 N976d5d107a594e05ade215be939ba70a
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112385876
57 https://doi.org/10.1186/s40657-019-0145-x
58 schema:sdDatePublished 2019-04-11T10:03
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N082903a354a54cf8b0972909a489cb51
61 schema:url https://link.springer.com/10.1186%2Fs40657-019-0145-x
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N06946e75ec364e4e9b43e0d1585bcaf2 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
66 schema:familyName de Boer
67 schema:givenName Willem F.
68 rdf:type schema:Person
69 N0777492d4a864e2ebd9270913df7c285 rdf:first Nb4fa80e1c1f746b1b8b6e556afc2ae0f
70 rdf:rest N77c0db5797864449a3cfa31af2529b2f
71 N082903a354a54cf8b0972909a489cb51 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N0a8f8abe7e8349548de40f631e69b784 rdf:first N1284df50179547ca8132833fbfc5ba0d
74 rdf:rest N0777492d4a864e2ebd9270913df7c285
75 N0c5494932a0c48d2a634dd05ac7ef273 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
76 schema:familyName Fox
77 schema:givenName Anthony D.
78 rdf:type schema:Person
79 N1284df50179547ca8132833fbfc5ba0d schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
80 schema:familyName Chen
81 schema:givenName Yan
82 rdf:type schema:Person
83 N224519986a5440b586dde6a3048e5d94 rdf:first N06946e75ec364e4e9b43e0d1585bcaf2
84 rdf:rest N9208c4eb87df4c689fc47ea051d33df8
85 N32ca7d015293447f9d7593506c710ed1 schema:volumeNumber 10
86 rdf:type schema:PublicationVolume
87 N77c0db5797864449a3cfa31af2529b2f rdf:first N8c20cb4077e74317bbd1d75503132355
88 rdf:rest N224519986a5440b586dde6a3048e5d94
89 N850281de539846ee8ddcab04c96679a7 schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 N880e9ac96294499cb1d434387ce49c66 schema:name dimensions_id
92 schema:value pub.1112385876
93 rdf:type schema:PropertyValue
94 N8c20cb4077e74317bbd1d75503132355 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
95 schema:familyName Cao
96 schema:givenName Lei
97 rdf:type schema:Person
98 N9208c4eb87df4c689fc47ea051d33df8 rdf:first N0c5494932a0c48d2a634dd05ac7ef273
99 rdf:rest rdf:nil
100 N953eb08801d64f15b1f07b46eff9efa4 schema:name doi
101 schema:value 10.1186/s40657-019-0145-x
102 rdf:type schema:PropertyValue
103 N976d5d107a594e05ade215be939ba70a schema:name readcube_id
104 schema:value cf058f713b2233499d3690951d177410db6aef283e1fa1ebb725bad93803ba33
105 rdf:type schema:PropertyValue
106 Nb4fa80e1c1f746b1b8b6e556afc2ae0f schema:affiliation https://www.grid.ac/institutes/grid.410625.4
107 schema:familyName Zhang
108 schema:givenName Yong
109 rdf:type schema:Person
110 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biological Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
114 schema:name Ecology
115 rdf:type schema:DefinedTerm
116 sg:journal.1050987 schema:issn 1674-7674
117 2053-7166
118 schema:name Avian Research
119 rdf:type schema:Periodical
120 sg:pub.10.1007/978-3-642-74542-3_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026670884
121 https://doi.org/10.1007/978-3-642-74542-3_22
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf00323486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052949061
124 https://doi.org/10.1007/bf00323486
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10336-013-0934-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031952776
127 https://doi.org/10.1007/s10336-013-0934-7
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10750-007-0598-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038705231
130 https://doi.org/10.1007/s10750-007-0598-5
131 rdf:type schema:CreativeWork
132 sg:pub.10.1046/j.1440-1703.1998.00247.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018459907
133 https://doi.org/10.1046/j.1440-1703.1998.00247.x
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/aqc.1154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016068856
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0040-5809(76)90040-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042594464
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0169-5347(92)90009-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1047734576
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0304-3770(86)90059-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004628724
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.aquabot.2008.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015488765
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.aquabot.2013.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020935037
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.baae.2011.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024193210
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.biocon.2008.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042963603
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ppees.2007.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005841154
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1017/s0959270910000201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015818117
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1034/j.1600-0706.2000.890207.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041588737
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1034/j.1600-0706.2003.12114.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052790825
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1046/j.1365-2656.1999.00335.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018868828
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1046/j.1365-2656.2001.00496.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056736278
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1046/j.1365-2745.2001.00668.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028347331
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1046/j.1440-1703.1998.00247.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018459907
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1086/282454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058592577
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1086/282455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058592578
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1086/675759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058858095
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/aob/mcr276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048194950
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1111/ibi.12039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040021070
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1111/j.0021-8901.2004.00923.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042665104
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1111/j.1365-2656.2006.01150.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021662408
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1111/j.1365-2656.2009.01556.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000583815
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1111/oik.01881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021624626
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1111/rec.12477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015574942
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1146/annurev.es.15.110184.002515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018624585
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1890/0012-9615(2002)072[0095:pfrdbh]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013619843
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1890/0012-9658(1999)080[2338:wcdiit]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052519315
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1890/04-1335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025420802
194 rdf:type schema:CreativeWork
195 https://doi.org/10.2307/1936082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069660151
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2307/2389936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069906184
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2307/3799903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070456651
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.410625.4 schema:alternateName Nanjing Forestry University
202 schema:name Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 210037, Nanjing, China
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
205 schema:name Research Center for Eco-Environmental Science, Chinese Academic of Sciences, 18 Shuangqing Road, 100085, Beijing, China
206 University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, 100049, Beijing, China
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.4818.5 schema:alternateName Wageningen University & Research
209 schema:name Resource Ecology Group, Wageningen University, Droevendaalsesteeg3a, 6708 PB, Wageningen, The Netherlands
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.59053.3a schema:alternateName University of Science and Technology of China
212 schema:name School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.7048.b schema:alternateName Aarhus University
215 schema:name Department of Bioscience, Aarhus University, Kalø, Grenåvej 14, 8410, Rønde, Denmark
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...