Tracking online topics over time: understanding dynamic hashtag communities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Philipp Lorenz-Spreen, Frederik Wolf, Jonas Braun, Gourab Ghoshal, Nataša Djurdjevac Conrad, Philipp Hövel

ABSTRACT

Background: Hashtags are widely used for communication in online media. As a condensed version of information, they characterize topics and discussions. For their analysis, we apply methods from network science and propose novel tools for tracing their dynamics in time-dependent data. The observations are characterized by bursty behaviors in the increases and decreases of hashtag usage. These features can be reproduced with a novel model of dynamic rankings. Hashtag communities in time: We build temporal and weighted co-occurrence networks from hashtags. On static snapshots, we infer the community structure using customized methods. On temporal networks, we solve the bipartite matching problem of detected communities at subsequent timesteps by taking into account higher-order memory. This results in a matching protocol that is robust toward temporal fluctuations and instabilities of the static community detection. The proposed methodology is broadly applicable and its outcomes reveal the temporal behavior of online topics. Modeling topic-dynamics: We consider the size of the communities in time as a proxy for online popularity dynamics. We find that the distributions of gains and losses, as well as the interevent times are fat-tailed indicating occasional, but large and sudden changes in the usage of hashtags. Inspired by typical website designs, we propose a stochastic model that incorporates a ranking with respect to a time-dependent prestige score. This causes occasional cascades of rank shift events and reproduces the observations with good agreement. This offers an explanation for the observed dynamics, based on characteristic elements of online media. More... »

PAGES

9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40649-018-0058-6

DOI

http://dx.doi.org/10.1186/s40649-018-0058-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107730140

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30416936


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Institute of Theoretical Physics, Technische Universit\u00e4t Berlin, Hardenbergstra\u00dfe 36, 10623, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lorenz-Spreen", 
        "givenName": "Philipp", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Potsdam Institute for Climate Impact Research", 
          "id": "https://www.grid.ac/institutes/grid.4556.2", 
          "name": [
            "Potsdam Institute for Climate Impact Research (PIK), Telegraphenberg A 31, 14473, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolf", 
        "givenName": "Frederik", 
        "id": "sg:person.010743551706.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010743551706.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Humboldt University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Department of Physics, Humboldt-Universit\u00e4t zu Berlin, Newtonstra\u00dfe 15, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braun", 
        "givenName": "Jonas", 
        "id": "sg:person.013731453706.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013731453706.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rochester", 
          "id": "https://www.grid.ac/institutes/grid.16416.34", 
          "name": [
            "Department of Physics and Astronomy, University of Rochester, 14627, Rochester, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghoshal", 
        "givenName": "Gourab", 
        "id": "sg:person.0632553306.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632553306.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zuse Institute Berlin", 
          "id": "https://www.grid.ac/institutes/grid.425649.8", 
          "name": [
            "Zuse Institute Berlin (ZIB), Takustra\u00dfe 7, 14195, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Djurdjevac Conrad", 
        "givenName": "Nata\u0161a", 
        "id": "sg:person.010727232531.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010727232531.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College Cork", 
          "id": "https://www.grid.ac/institutes/grid.7872.a", 
          "name": [
            "Institute of Theoretical Physics, Technische Universit\u00e4t Berlin, Hardenbergstra\u00dfe 36, 10623, Berlin, Germany", 
            "School of Mathematical Sciences, University College Cork, Western Road, T12 XF62, Cork, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6vel", 
        "givenName": "Philipp", 
        "id": "sg:person.01343257177.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343257177.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0024926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000512935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000936185", 
          "https://doi.org/10.1038/nature09182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000936185", 
          "https://doi.org/10.1038/nature09182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.026112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008006377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.026112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008006377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010025359", 
          "https://doi.org/10.1038/nature05670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010025359", 
          "https://doi.org/10.1038/nature05670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601602103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016125157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2309996.2310032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016242921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018794806", 
          "https://doi.org/10.1038/ncomms5630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0023883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019553021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1602803113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019602720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15105-7_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019664126", 
          "https://doi.org/10.1007/978-3-642-15105-7_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15105-7_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019664126", 
          "https://doi.org/10.1007/978-3-642-15105-7_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2009.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020482279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.218701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022068471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.218701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022068471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13278-012-0074-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026171863", 
          "https://doi.org/10.1007/s13278-012-0074-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13278-012-0074-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026171863", 
          "https://doi.org/10.1007/s13278-012-0074-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.4.011047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029181440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.4.011047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029181440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nav.3800020109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032778056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2008/10/p10008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037912856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039770910", 
          "https://doi.org/10.1038/srep00335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.158701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042473307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.158701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042473307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2001.1800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045354190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0008694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048268212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.1842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050793825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.1842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050793825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1281192.1281269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051133399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1631162.1631164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051175368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1557019.1557077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053219210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6729-8_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053459988", 
          "https://doi.org/10.1007/978-1-4614-6729-8_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0307750100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053644864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/070699500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/070710111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/jcd.2014.1.191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071739363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.95.032311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084198901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.95.032311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084198901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-72150-7_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093022540", 
          "https://doi.org/10.1007/978-3-319-72150-7_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/asonam.2010.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094419679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/socialcom.2010.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094916864"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Background: Hashtags are widely used for communication in online media. As a condensed version of information, they characterize topics and discussions. For their analysis, we apply methods from network science and propose novel tools for tracing their dynamics in time-dependent data. The observations are characterized by bursty behaviors in the increases and decreases of hashtag usage. These features can be reproduced with a novel model of dynamic rankings.\nHashtag communities in time: We build temporal and weighted co-occurrence networks from hashtags. On static snapshots, we infer the community structure using customized methods. On temporal networks, we solve the bipartite matching problem of detected communities at subsequent timesteps by taking into account higher-order memory. This results in a matching protocol that is robust toward temporal fluctuations and instabilities of the static community detection. The proposed methodology is broadly applicable and its outcomes reveal the temporal behavior of online topics.\nModeling topic-dynamics: We consider the size of the communities in time as a proxy for online popularity dynamics. We find that the distributions of gains and losses, as well as the interevent times are fat-tailed indicating occasional, but large and sudden changes in the usage of hashtags. Inspired by typical website designs, we propose a stochastic model that incorporates a ranking with respect to a time-dependent prestige score. This causes occasional cascades of rank shift events and reproduces the observations with good agreement. This offers an explanation for the observed dynamics, based on characteristic elements of online media.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40649-018-0058-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136872", 
        "issn": [
          "2197-4314"
        ], 
        "name": "Computational Social Networks", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Tracking online topics over time: understanding dynamic hashtag communities", 
    "pagination": "9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cf66225827dd15afec21f06db5f2629e42009a4d8bef79d79eb8ca243d334556"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30416936"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101718050"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40649-018-0058-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107730140"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40649-018-0058-6", 
      "https://app.dimensions.ai/details/publication/pub.1107730140"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40649-018-0058-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40649-018-0058-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40649-018-0058-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40649-018-0058-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40649-018-0058-6'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40649-018-0058-6 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N7d2c22ce1dbc46fe987c9140c4920c06
4 schema:citation sg:pub.10.1007/978-1-4614-6729-8_9
5 sg:pub.10.1007/978-3-319-72150-7_33
6 sg:pub.10.1007/978-3-642-15105-7_6
7 sg:pub.10.1007/s13278-012-0074-8
8 sg:pub.10.1038/nature03607
9 sg:pub.10.1038/nature05670
10 sg:pub.10.1038/nature09182
11 sg:pub.10.1038/ncomms5630
12 sg:pub.10.1038/srep00335
13 https://doi.org/10.1002/nav.3800020109
14 https://doi.org/10.1016/j.physrep.2009.11.002
15 https://doi.org/10.1073/pnas.0307750100
16 https://doi.org/10.1073/pnas.0601602103
17 https://doi.org/10.1073/pnas.1602803113
18 https://doi.org/10.1088/1742-5468/2008/10/p10008
19 https://doi.org/10.1098/rspb.2001.1800
20 https://doi.org/10.1103/physreve.62.1842
21 https://doi.org/10.1103/physreve.67.026112
22 https://doi.org/10.1103/physreve.95.032311
23 https://doi.org/10.1103/physrevlett.105.158701
24 https://doi.org/10.1103/physrevlett.96.218701
25 https://doi.org/10.1103/physrevx.4.011047
26 https://doi.org/10.1109/asonam.2010.17
27 https://doi.org/10.1109/socialcom.2010.51
28 https://doi.org/10.1126/science.286.5439.509
29 https://doi.org/10.1137/070699500
30 https://doi.org/10.1137/070710111
31 https://doi.org/10.1145/1281192.1281269
32 https://doi.org/10.1145/1557019.1557077
33 https://doi.org/10.1145/1631162.1631164
34 https://doi.org/10.1145/2309996.2310032
35 https://doi.org/10.1371/journal.pone.0008694
36 https://doi.org/10.1371/journal.pone.0023883
37 https://doi.org/10.1371/journal.pone.0024926
38 https://doi.org/10.3934/jcd.2014.1.191
39 schema:datePublished 2018-12
40 schema:datePublishedReg 2018-12-01
41 schema:description Background: Hashtags are widely used for communication in online media. As a condensed version of information, they characterize topics and discussions. For their analysis, we apply methods from network science and propose novel tools for tracing their dynamics in time-dependent data. The observations are characterized by bursty behaviors in the increases and decreases of hashtag usage. These features can be reproduced with a novel model of dynamic rankings. Hashtag communities in time: We build temporal and weighted co-occurrence networks from hashtags. On static snapshots, we infer the community structure using customized methods. On temporal networks, we solve the bipartite matching problem of detected communities at subsequent timesteps by taking into account higher-order memory. This results in a matching protocol that is robust toward temporal fluctuations and instabilities of the static community detection. The proposed methodology is broadly applicable and its outcomes reveal the temporal behavior of online topics. Modeling topic-dynamics: We consider the size of the communities in time as a proxy for online popularity dynamics. We find that the distributions of gains and losses, as well as the interevent times are fat-tailed indicating occasional, but large and sudden changes in the usage of hashtags. Inspired by typical website designs, we propose a stochastic model that incorporates a ranking with respect to a time-dependent prestige score. This causes occasional cascades of rank shift events and reproduces the observations with good agreement. This offers an explanation for the observed dynamics, based on characteristic elements of online media.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf Na249995d6d45452bbbd4ce5a06a403fb
46 Na90f3cea9ccb4c5d85118508ffa4e38b
47 sg:journal.1136872
48 schema:name Tracking online topics over time: understanding dynamic hashtag communities
49 schema:pagination 9
50 schema:productId N48424bc8baa14f409a6b090578fd3b75
51 Nc2b5439299844903b21d705454c0acb0
52 Nd4b7da60aaf8452e9c4f38d6367a5111
53 Nd91c50ec24984f3f931618a4a03f4280
54 Ne62ff8ceb73046a4b1b6ef12998cc8a2
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107730140
56 https://doi.org/10.1186/s40649-018-0058-6
57 schema:sdDatePublished 2019-04-11T02:32
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N5cc00341e0194617a18f8d9014185b42
60 schema:url https://link.springer.com/10.1186%2Fs40649-018-0058-6
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N168e0b79eb8340d591908ce1e72ff13b rdf:first sg:person.013731453706.33
65 rdf:rest Nb19754c064e94ef094701f5acb6df15b
66 N1c971d0c91e141b2b1b99c2b2f33e913 rdf:first sg:person.010727232531.52
67 rdf:rest Ne93462305a0e4a738464973521d264f7
68 N2abe18b0b9fe4b4a86f4e4ca8be90aeb schema:affiliation https://www.grid.ac/institutes/grid.6734.6
69 schema:familyName Lorenz-Spreen
70 schema:givenName Philipp
71 rdf:type schema:Person
72 N48424bc8baa14f409a6b090578fd3b75 schema:name doi
73 schema:value 10.1186/s40649-018-0058-6
74 rdf:type schema:PropertyValue
75 N5cc00341e0194617a18f8d9014185b42 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N7d2c22ce1dbc46fe987c9140c4920c06 rdf:first N2abe18b0b9fe4b4a86f4e4ca8be90aeb
78 rdf:rest Ne20a22d7a1f04d499ca193c412e4ccfd
79 Na249995d6d45452bbbd4ce5a06a403fb schema:volumeNumber 5
80 rdf:type schema:PublicationVolume
81 Na90f3cea9ccb4c5d85118508ffa4e38b schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 Nb19754c064e94ef094701f5acb6df15b rdf:first sg:person.0632553306.73
84 rdf:rest N1c971d0c91e141b2b1b99c2b2f33e913
85 Nc2b5439299844903b21d705454c0acb0 schema:name dimensions_id
86 schema:value pub.1107730140
87 rdf:type schema:PropertyValue
88 Nd4b7da60aaf8452e9c4f38d6367a5111 schema:name nlm_unique_id
89 schema:value 101718050
90 rdf:type schema:PropertyValue
91 Nd91c50ec24984f3f931618a4a03f4280 schema:name readcube_id
92 schema:value cf66225827dd15afec21f06db5f2629e42009a4d8bef79d79eb8ca243d334556
93 rdf:type schema:PropertyValue
94 Ne20a22d7a1f04d499ca193c412e4ccfd rdf:first sg:person.010743551706.16
95 rdf:rest N168e0b79eb8340d591908ce1e72ff13b
96 Ne62ff8ceb73046a4b1b6ef12998cc8a2 schema:name pubmed_id
97 schema:value 30416936
98 rdf:type schema:PropertyValue
99 Ne93462305a0e4a738464973521d264f7 rdf:first sg:person.01343257177.22
100 rdf:rest rdf:nil
101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
102 schema:name Information and Computing Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information Systems
106 rdf:type schema:DefinedTerm
107 sg:journal.1136872 schema:issn 2197-4314
108 schema:name Computational Social Networks
109 rdf:type schema:Periodical
110 sg:person.010727232531.52 schema:affiliation https://www.grid.ac/institutes/grid.425649.8
111 schema:familyName Djurdjevac Conrad
112 schema:givenName Nataša
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010727232531.52
114 rdf:type schema:Person
115 sg:person.010743551706.16 schema:affiliation https://www.grid.ac/institutes/grid.4556.2
116 schema:familyName Wolf
117 schema:givenName Frederik
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010743551706.16
119 rdf:type schema:Person
120 sg:person.01343257177.22 schema:affiliation https://www.grid.ac/institutes/grid.7872.a
121 schema:familyName Hövel
122 schema:givenName Philipp
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343257177.22
124 rdf:type schema:Person
125 sg:person.013731453706.33 schema:affiliation https://www.grid.ac/institutes/grid.7468.d
126 schema:familyName Braun
127 schema:givenName Jonas
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013731453706.33
129 rdf:type schema:Person
130 sg:person.0632553306.73 schema:affiliation https://www.grid.ac/institutes/grid.16416.34
131 schema:familyName Ghoshal
132 schema:givenName Gourab
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632553306.73
134 rdf:type schema:Person
135 sg:pub.10.1007/978-1-4614-6729-8_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053459988
136 https://doi.org/10.1007/978-1-4614-6729-8_9
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-319-72150-7_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093022540
139 https://doi.org/10.1007/978-3-319-72150-7_33
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-642-15105-7_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019664126
142 https://doi.org/10.1007/978-3-642-15105-7_6
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s13278-012-0074-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026171863
145 https://doi.org/10.1007/s13278-012-0074-8
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature03607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032155732
148 https://doi.org/10.1038/nature03607
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature05670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010025359
151 https://doi.org/10.1038/nature05670
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nature09182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000936185
154 https://doi.org/10.1038/nature09182
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/ncomms5630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018794806
157 https://doi.org/10.1038/ncomms5630
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/srep00335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039770910
160 https://doi.org/10.1038/srep00335
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/nav.3800020109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032778056
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.physrep.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020482279
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1073/pnas.0307750100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053644864
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1073/pnas.0601602103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016125157
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1073/pnas.1602803113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019602720
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1088/1742-5468/2008/10/p10008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037912856
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1098/rspb.2001.1800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045354190
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreve.62.1842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050793825
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreve.67.026112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008006377
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physreve.95.032311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084198901
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.105.158701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042473307
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.96.218701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022068471
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevx.4.011047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029181440
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/asonam.2010.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094419679
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/socialcom.2010.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094916864
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1137/070699500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851468
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1137/070710111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851851
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1145/1281192.1281269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051133399
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1145/1557019.1557077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053219210
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1145/1631162.1631164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051175368
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1145/2309996.2310032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016242921
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1371/journal.pone.0008694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048268212
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1371/journal.pone.0023883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019553021
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1371/journal.pone.0024926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000512935
211 rdf:type schema:CreativeWork
212 https://doi.org/10.3934/jcd.2014.1.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071739363
213 rdf:type schema:CreativeWork
214 https://www.grid.ac/institutes/grid.16416.34 schema:alternateName University of Rochester
215 schema:name Department of Physics and Astronomy, University of Rochester, 14627, Rochester, NY, USA
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.425649.8 schema:alternateName Zuse Institute Berlin
218 schema:name Zuse Institute Berlin (ZIB), Takustraße 7, 14195, Berlin, Germany
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.4556.2 schema:alternateName Potsdam Institute for Climate Impact Research
221 schema:name Potsdam Institute for Climate Impact Research (PIK), Telegraphenberg A 31, 14473, Potsdam, Germany
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.6734.6 schema:alternateName Technical University of Berlin
224 schema:name Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.7468.d schema:alternateName Humboldt University of Berlin
227 schema:name Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489, Berlin, Germany
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.7872.a schema:alternateName University College Cork
230 schema:name Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
231 School of Mathematical Sciences, University College Cork, Western Road, T12 XF62, Cork, Ireland
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...