Force sensor utilizing stiffness change of shape-memory polymer based on temperature View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Kazuto Takashima, Hiroki Kamizono, Makoto Takenaka, Toshiharu Mukai

ABSTRACT

In this study, we propose a force sensor using a shape-memory polymer (SMP) whose stiffness varies according to the temperature. An SMP can be deformed above its glass transition temperature (Tg) by applying a small load. A deformed SMP maintains its shape when cooled below Tg and returns to its predefined shape when subsequently heated above Tg. The reversible change in the elastic modulus between the glassy and rubbery states of an SMP can be on the order of several hundred-fold. The relationship between the applied force and the deformation of the SMP changes depending on the temperature. Our sensor consists of strain gauges bonded to an SMP bending beam and senses the applied force by measuring the strain. Therefore, the force measuring range and the sensitivity can be changed according to the temperature. In this study, we evaluate a prototype of the sensor using the SMP sheet with embedded electrical heating wire. Moreover, we improve the sensor by combining the SMP and a stainless steel plate. The enhanced versatility of SMP force sensors is demonstrated through a series of experiments conducted using the prototype. More... »

PAGES

17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40648-017-0086-2

DOI

http://dx.doi.org/10.1186/s40648-017-0086-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085990491


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyushu Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.258806.1", 
          "name": [
            "Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, 808-0196, Kitakyushu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takashima", 
        "givenName": "Kazuto", 
        "id": "sg:person.015253760145.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015253760145.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.258806.1", 
          "name": [
            "Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, 808-0196, Kitakyushu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamizono", 
        "givenName": "Hiroki", 
        "id": "sg:person.07755704106.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07755704106.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.258806.1", 
          "name": [
            "Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, 808-0196, Kitakyushu, Japan", 
            "Kagawa Prefectural Industrial Technology Research Center, 587-1 Gotocho, 716-8031, Takamatsu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takenaka", 
        "givenName": "Makoto", 
        "id": "sg:person.015326226575.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015326226575.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meijo University", 
          "id": "https://www.grid.ac/institutes/grid.259879.8", 
          "name": [
            "Department of Information Engineering, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, 468-8502, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mukai", 
        "givenName": "Toshiharu", 
        "id": "sg:person.015115741735.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015115741735.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.sna.2010.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002065579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0964-1726/22/9/093001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004363653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0964-1726/23/2/023001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009822925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1299/kikaia.64.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009997506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijplas.2005.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022728945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1299/kikaic.77.3794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025616916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0964-1726/23/12/125005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041196987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.11.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041390745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5sm02703a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042243162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0964-1726/23/4/045007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048347839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2011.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048861438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0964-1726/21/11/112002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049019095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-7021(07)70047-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049746956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7210/jrsj.28.905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050187526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1045389x16634211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063926956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1045389x16634211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063926956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.20965/jrm.2012.p0472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068823089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2008.4650925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093594978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icra.2016.7487575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094256602"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "In this study, we propose a force sensor using a shape-memory polymer (SMP) whose stiffness varies according to the temperature. An SMP can be deformed above its glass transition temperature (Tg) by applying a small load. A deformed SMP maintains its shape when cooled below Tg and returns to its predefined shape when subsequently heated above Tg. The reversible change in the elastic modulus between the glassy and rubbery states of an SMP can be on the order of several hundred-fold. The relationship between the applied force and the deformation of the SMP changes depending on the temperature. Our sensor consists of strain gauges bonded to an SMP bending beam and senses the applied force by measuring the strain. Therefore, the force measuring range and the sensitivity can be changed according to the temperature. In this study, we evaluate a prototype of the sensor using the SMP sheet with embedded electrical heating wire. Moreover, we improve the sensor by combining the SMP and a stainless steel plate. The enhanced versatility of SMP force sensors is demonstrated through a series of experiments conducted using the prototype.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40648-017-0086-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1135873", 
        "issn": [
          "2197-4225"
        ], 
        "name": "ROBOMECH Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Force sensor utilizing stiffness change of shape-memory polymer based on temperature", 
    "pagination": "17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3cac5327c66a9ddb45233f97f9989724c55a9b9cbbfdde44343c103c151e3d65"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40648-017-0086-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085990491"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40648-017-0086-2", 
      "https://app.dimensions.ai/details/publication/pub.1085990491"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89798_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40648-017-0086-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40648-017-0086-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40648-017-0086-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40648-017-0086-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40648-017-0086-2'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40648-017-0086-2 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb0d4bb693e4e407987531033bc641601
4 schema:citation https://doi.org/10.1016/j.ijplas.2005.03.004
5 https://doi.org/10.1016/j.matdes.2013.11.084
6 https://doi.org/10.1016/j.pmatsci.2011.03.001
7 https://doi.org/10.1016/j.sna.2010.09.010
8 https://doi.org/10.1016/s1369-7021(07)70047-0
9 https://doi.org/10.1039/c5sm02703a
10 https://doi.org/10.1088/0964-1726/21/11/112002
11 https://doi.org/10.1088/0964-1726/22/9/093001
12 https://doi.org/10.1088/0964-1726/23/12/125005
13 https://doi.org/10.1088/0964-1726/23/2/023001
14 https://doi.org/10.1088/0964-1726/23/4/045007
15 https://doi.org/10.1109/icra.2016.7487575
16 https://doi.org/10.1109/iros.2008.4650925
17 https://doi.org/10.1177/1045389x16634211
18 https://doi.org/10.1299/kikaia.64.186
19 https://doi.org/10.1299/kikaic.77.3794
20 https://doi.org/10.20965/jrm.2012.p0472
21 https://doi.org/10.7210/jrsj.28.905
22 schema:datePublished 2017-12
23 schema:datePublishedReg 2017-12-01
24 schema:description In this study, we propose a force sensor using a shape-memory polymer (SMP) whose stiffness varies according to the temperature. An SMP can be deformed above its glass transition temperature (Tg) by applying a small load. A deformed SMP maintains its shape when cooled below Tg and returns to its predefined shape when subsequently heated above Tg. The reversible change in the elastic modulus between the glassy and rubbery states of an SMP can be on the order of several hundred-fold. The relationship between the applied force and the deformation of the SMP changes depending on the temperature. Our sensor consists of strain gauges bonded to an SMP bending beam and senses the applied force by measuring the strain. Therefore, the force measuring range and the sensitivity can be changed according to the temperature. In this study, we evaluate a prototype of the sensor using the SMP sheet with embedded electrical heating wire. Moreover, we improve the sensor by combining the SMP and a stainless steel plate. The enhanced versatility of SMP force sensors is demonstrated through a series of experiments conducted using the prototype.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N44e8327047c642839ded5682e7f92b2e
29 N7ff5d5c62ee44344928cc4ffaea49825
30 sg:journal.1135873
31 schema:name Force sensor utilizing stiffness change of shape-memory polymer based on temperature
32 schema:pagination 17
33 schema:productId N79b69b190f914ae1913f06f6d663cf3c
34 N86af7725160f4973b24b18efedd295a2
35 N8b4413a5827b460f8cc14c2dda533fb4
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085990491
37 https://doi.org/10.1186/s40648-017-0086-2
38 schema:sdDatePublished 2019-04-11T09:54
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nda72614b321e4e5a829e45dcc6b30fea
41 schema:url https://link.springer.com/10.1186%2Fs40648-017-0086-2
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N44e8327047c642839ded5682e7f92b2e schema:issueNumber 1
46 rdf:type schema:PublicationIssue
47 N79b69b190f914ae1913f06f6d663cf3c schema:name readcube_id
48 schema:value 3cac5327c66a9ddb45233f97f9989724c55a9b9cbbfdde44343c103c151e3d65
49 rdf:type schema:PropertyValue
50 N7ff5d5c62ee44344928cc4ffaea49825 schema:volumeNumber 4
51 rdf:type schema:PublicationVolume
52 N86af7725160f4973b24b18efedd295a2 schema:name doi
53 schema:value 10.1186/s40648-017-0086-2
54 rdf:type schema:PropertyValue
55 N8b4413a5827b460f8cc14c2dda533fb4 schema:name dimensions_id
56 schema:value pub.1085990491
57 rdf:type schema:PropertyValue
58 Na1956863cd844e2bbad22aa0dc951d84 rdf:first sg:person.015326226575.37
59 rdf:rest Nc3dcdeb5f1ae4eb88f799cf4c2bc98d8
60 Nb0d4bb693e4e407987531033bc641601 rdf:first sg:person.015253760145.65
61 rdf:rest Nd88872e5cc9f48898e495b682c383a50
62 Nc3dcdeb5f1ae4eb88f799cf4c2bc98d8 rdf:first sg:person.015115741735.38
63 rdf:rest rdf:nil
64 Nd88872e5cc9f48898e495b682c383a50 rdf:first sg:person.07755704106.52
65 rdf:rest Na1956863cd844e2bbad22aa0dc951d84
66 Nda72614b321e4e5a829e45dcc6b30fea schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
69 schema:name Engineering
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
72 schema:name Materials Engineering
73 rdf:type schema:DefinedTerm
74 sg:journal.1135873 schema:issn 2197-4225
75 schema:name ROBOMECH Journal
76 rdf:type schema:Periodical
77 sg:person.015115741735.38 schema:affiliation https://www.grid.ac/institutes/grid.259879.8
78 schema:familyName Mukai
79 schema:givenName Toshiharu
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015115741735.38
81 rdf:type schema:Person
82 sg:person.015253760145.65 schema:affiliation https://www.grid.ac/institutes/grid.258806.1
83 schema:familyName Takashima
84 schema:givenName Kazuto
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015253760145.65
86 rdf:type schema:Person
87 sg:person.015326226575.37 schema:affiliation https://www.grid.ac/institutes/grid.258806.1
88 schema:familyName Takenaka
89 schema:givenName Makoto
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015326226575.37
91 rdf:type schema:Person
92 sg:person.07755704106.52 schema:affiliation https://www.grid.ac/institutes/grid.258806.1
93 schema:familyName Kamizono
94 schema:givenName Hiroki
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07755704106.52
96 rdf:type schema:Person
97 https://doi.org/10.1016/j.ijplas.2005.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022728945
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.matdes.2013.11.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041390745
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.pmatsci.2011.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048861438
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.sna.2010.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002065579
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s1369-7021(07)70047-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049746956
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1039/c5sm02703a schema:sameAs https://app.dimensions.ai/details/publication/pub.1042243162
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1088/0964-1726/21/11/112002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049019095
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1088/0964-1726/22/9/093001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004363653
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1088/0964-1726/23/12/125005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041196987
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1088/0964-1726/23/2/023001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009822925
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1088/0964-1726/23/4/045007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048347839
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/icra.2016.7487575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094256602
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/iros.2008.4650925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093594978
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1177/1045389x16634211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063926956
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1299/kikaia.64.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009997506
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1299/kikaic.77.3794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025616916
128 rdf:type schema:CreativeWork
129 https://doi.org/10.20965/jrm.2012.p0472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068823089
130 rdf:type schema:CreativeWork
131 https://doi.org/10.7210/jrsj.28.905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050187526
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.258806.1 schema:alternateName Kyushu Institute of Technology
134 schema:name Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, 808-0196, Kitakyushu, Japan
135 Kagawa Prefectural Industrial Technology Research Center, 587-1 Gotocho, 716-8031, Takamatsu, Japan
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.259879.8 schema:alternateName Meijo University
138 schema:name Department of Information Engineering, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, 468-8502, Nagoya, Japan
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...