Shigaraki UAV-Radar Experiment (ShUREX): overview of the campaign with some preliminary results View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07-17

AUTHORS

Lakshmi Kantha, Dale Lawrence, Hubert Luce, Hiroyuki Hashiguchi, Toshitaka Tsuda, Richard Wilson, Tyler Mixa, Masanori Yabuki

ABSTRACT

The Shigaraki unmanned aerial vehicle (UAV)-Radar Experiment (ShUREX) is an international (USA-Japan-France) observational campaign, whose overarching goal is to demonstrate the utility of small, lightweight, inexpensive, autonomous UAVs in probing and monitoring the lower troposphere and to promote synergistic use of UAVs and very high frequency (VHF) radars. The 2-week campaign lasting from June 1 to June 14, 2015, was carried out at the Middle and Upper Atmosphere (MU) Observatory in Shigaraki, Japan. During the campaign, the DataHawk UAV, developed at the University of Colorado, Boulder, and equipped with high-frequency response cold wire and pitot tube sensors (as well as an iMET radiosonde), was flown near and over the VHF-band MU radar. Measurements in the atmospheric column in the immediate vicinity of the radar were obtained. Simultaneous and continuous operation of the radar in range imaging mode enabled fine-scale structures in the atmosphere to be visualized by the radar. It also permitted the UAV to be commanded to sample interesting structures, guided in near real time by the radar images. This overview provides a description of the ShUREX campaign and some interesting but preliminary results of the very first simultaneous and intensive probing of turbulent structures by UAVs and the MU radar. The campaign demonstrated the validity and utility of the radar range imaging technique in obtaining very high vertical resolution (~20 m) images of echo power in the atmospheric column, which display evolving fine-scale atmospheric structures in unprecedented detail. The campaign also permitted for the very first time the evaluation of the consistency of turbulent kinetic energy dissipation rates in turbulent structures inferred from the spectral broadening of the backscattered radar signal and direct, in situ measurements by the high-frequency response velocity sensor on the UAV. The data also enabled other turbulence parameters such as the temperature structure function parameter CT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {C}_T^2 $$\end{document} and refractive index structure function parameter Cn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {C}_n^2 $$\end{document} to be measured by sensors on the UAV, along with radar-inferred refractive index structure function parameter Cn,radar2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {C}_{n,\mathrm{radar}}^2 $$\end{document}. The comprehensive dataset collected during the campaign (from the radar, the UAV, the boundary layer lidar, the ceilometer, and radiosondes) is expected to help obtain a better understanding of turbulent atmospheric structures, as well as arrive at a better interpretation of the radar data. More... »

PAGES

19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40645-017-0133-x

DOI

http://dx.doi.org/10.1186/s40645-017-0133-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090741168


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aerospace Engineering Sciences, University of Colorado, 80309, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Aerospace Engineering Sciences, University of Colorado, 80309, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kantha", 
        "givenName": "Lakshmi", 
        "id": "sg:person.07513074607.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07513074607.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aerospace Engineering Sciences, University of Colorado, 80309, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Aerospace Engineering Sciences, University of Colorado, 80309, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lawrence", 
        "givenName": "Dale", 
        "id": "sg:person.016675237227.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016675237227.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mediterranean Institute of Oceanography (MIO), Universit\u00e9 de Toulon, CNRS/INSU, UM 110, Toulon, France", 
          "id": "http://www.grid.ac/institutes/grid.500499.1", 
          "name": [
            "Mediterranean Institute of Oceanography (MIO), Universit\u00e9 de Toulon, CNRS/INSU, UM 110, Toulon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luce", 
        "givenName": "Hubert", 
        "id": "sg:person.014054430011.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014054430011.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashiguchi", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.013500043445.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013500043445.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsuda", 
        "givenName": "Toshitaka", 
        "id": "sg:person.011357206365.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011357206365.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LATMOS-IPSL, Universit\u00e9 Pierre et Marie Curie (UPMC), CNRS-INSU, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "LATMOS-IPSL, Universit\u00e9 Pierre et Marie Curie (UPMC), CNRS-INSU, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wilson", 
        "givenName": "Richard", 
        "id": "sg:person.013331421144.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013331421144.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aerospace Engineering Sciences, University of Colorado, 80309, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Aerospace Engineering Sciences, University of Colorado, 80309, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mixa", 
        "givenName": "Tyler", 
        "id": "sg:person.010261347426.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010261347426.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yabuki", 
        "givenName": "Masanori", 
        "id": "sg:person.015367202214.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015367202214.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/bf03353213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012041776", 
          "https://doi.org/10.1186/bf03353213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-012-9774-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035763227", 
          "https://doi.org/10.1007/s10546-012-9774-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-935704-15-7_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048248506", 
          "https://doi.org/10.1007/978-1-935704-15-7_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-4-431-54334-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038354111", 
          "https://doi.org/10.1007/978-4-431-54334-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-015-0009-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038443228", 
          "https://doi.org/10.1007/s10546-015-0009-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07-17", 
    "datePublishedReg": "2017-07-17", 
    "description": "The Shigaraki unmanned aerial vehicle (UAV)-Radar Experiment (ShUREX) is an international (USA-Japan-France) observational campaign, whose overarching goal is to demonstrate the utility of small, lightweight, inexpensive, autonomous UAVs in probing and monitoring the lower troposphere and to promote synergistic use of UAVs and very high frequency (VHF) radars. The 2-week campaign lasting from June 1 to June 14, 2015, was carried out at the Middle and Upper Atmosphere (MU) Observatory in Shigaraki, Japan. During the campaign, the DataHawk UAV, developed at the University of Colorado, Boulder, and equipped with high-frequency response cold wire and pitot tube sensors (as well as an iMET radiosonde), was flown near and over the VHF-band MU radar. Measurements in the atmospheric column in the immediate vicinity of the radar were obtained. Simultaneous and continuous operation of the radar in range imaging mode enabled fine-scale structures in the atmosphere to be visualized by the radar. It also permitted the UAV to be commanded to sample interesting structures, guided in near real time by the radar images. This overview provides a description of the ShUREX campaign and some interesting but preliminary results of the very first simultaneous and intensive probing of turbulent structures by UAVs and the MU radar. The campaign demonstrated the validity and utility of the radar range imaging technique in obtaining very high vertical resolution (~20\u00a0m) images of echo power in the atmospheric column, which display evolving fine-scale atmospheric structures in unprecedented detail. The campaign also permitted for the very first time the evaluation of the consistency of turbulent kinetic energy dissipation rates in turbulent structures inferred from the spectral broadening of the backscattered radar signal and direct, in situ measurements by the high-frequency response velocity sensor on the UAV. The data also enabled other turbulence parameters such as the temperature structure function parameter CT2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {C}_T^2 $$\\end{document} and refractive index structure function parameter Cn2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {C}_n^2 $$\\end{document} to be measured by sensors on the UAV, along with radar-inferred refractive index structure function parameter Cn,radar2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {C}_{n,\\mathrm{radar}}^2 $$\\end{document}. The comprehensive dataset collected during the campaign (from the radar, the UAV, the boundary layer lidar, the ceilometer, and radiosondes) is expected to help obtain a better understanding of turbulent atmospheric structures, as well as arrive at a better interpretation of the radar data.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40645-017-0133-x", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5855711", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5542331", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6542192", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5874836", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5542187", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136393", 
        "issn": [
          "2197-4284"
        ], 
        "name": "Progress in Earth and Planetary Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "structure function parameter", 
      "refractive index structure function parameter", 
      "MU radar", 
      "atmospheric structure", 
      "upper atmosphere (MU) observatory", 
      "turbulent structures", 
      "Pitot tube sensor", 
      "fine-scale atmospheric structures", 
      "turbulent kinetic energy dissipation rate", 
      "temperature structure function parameter", 
      "kinetic energy dissipation rate", 
      "spectral broadening", 
      "unmanned aerial vehicles", 
      "observational campaign", 
      "atmospheric column", 
      "energy dissipation rate", 
      "international observational campaign", 
      "radar experiments", 
      "cold wire", 
      "tube sensor", 
      "velocity sensor", 
      "aerial vehicles", 
      "continuous operation", 
      "turbulence parameters", 
      "unprecedented detail", 
      "radar signals", 
      "dissipation rate", 
      "UAV", 
      "echo power", 
      "radar range", 
      "autonomous UAVs", 
      "fine-scale structure", 
      "situ measurements", 
      "radar images", 
      "radar", 
      "radar data", 
      "intensive probing", 
      "interesting structures", 
      "sensors", 
      "preliminary results", 
      "Observatory", 
      "resolution images", 
      "synergistic use", 
      "parameter CN", 
      "measurements", 
      "real time", 
      "Shigaraki", 
      "broadening", 
      "first time", 
      "structure", 
      "immediate vicinity", 
      "probing", 
      "parameters", 
      "lower troposphere", 
      "University of Colorado", 
      "atmosphere", 
      "wire", 
      "column", 
      "range", 
      "vehicles", 
      "experiments", 
      "vicinity", 
      "high frequency", 
      "mode", 
      "operation", 
      "images", 
      "power", 
      "better interpretation", 
      "frequency", 
      "signals", 
      "results", 
      "troposphere", 
      "campaign", 
      "detail", 
      "technique", 
      "time", 
      "description", 
      "overview", 
      "better understanding", 
      "CN", 
      "comprehensive dataset", 
      "boulders", 
      "interpretation", 
      "rate", 
      "validity", 
      "data", 
      "use", 
      "function parameters", 
      "utility", 
      "evaluation", 
      "middle", 
      "Colorado", 
      "consistency", 
      "understanding", 
      "goal", 
      "dataset", 
      "Japan", 
      "University"
    ], 
    "name": "Shigaraki UAV-Radar Experiment (ShUREX): overview of the campaign with some preliminary results", 
    "pagination": "19", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090741168"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40645-017-0133-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40645-017-0133-x", 
      "https://app.dimensions.ai/details/publication/pub.1090741168"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_747.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40645-017-0133-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40645-017-0133-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40645-017-0133-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40645-017-0133-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40645-017-0133-x'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      21 PREDICATES      127 URIs      114 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40645-017-0133-x schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N1a6a4b0b5f9e4f69ac28f6ea02a8dd9f
4 schema:citation sg:pub.10.1007/978-1-935704-15-7_23
5 sg:pub.10.1007/978-4-431-54334-3
6 sg:pub.10.1007/s10546-012-9774-x
7 sg:pub.10.1007/s10546-015-0009-9
8 sg:pub.10.1186/bf03353213
9 schema:datePublished 2017-07-17
10 schema:datePublishedReg 2017-07-17
11 schema:description The Shigaraki unmanned aerial vehicle (UAV)-Radar Experiment (ShUREX) is an international (USA-Japan-France) observational campaign, whose overarching goal is to demonstrate the utility of small, lightweight, inexpensive, autonomous UAVs in probing and monitoring the lower troposphere and to promote synergistic use of UAVs and very high frequency (VHF) radars. The 2-week campaign lasting from June 1 to June 14, 2015, was carried out at the Middle and Upper Atmosphere (MU) Observatory in Shigaraki, Japan. During the campaign, the DataHawk UAV, developed at the University of Colorado, Boulder, and equipped with high-frequency response cold wire and pitot tube sensors (as well as an iMET radiosonde), was flown near and over the VHF-band MU radar. Measurements in the atmospheric column in the immediate vicinity of the radar were obtained. Simultaneous and continuous operation of the radar in range imaging mode enabled fine-scale structures in the atmosphere to be visualized by the radar. It also permitted the UAV to be commanded to sample interesting structures, guided in near real time by the radar images. This overview provides a description of the ShUREX campaign and some interesting but preliminary results of the very first simultaneous and intensive probing of turbulent structures by UAVs and the MU radar. The campaign demonstrated the validity and utility of the radar range imaging technique in obtaining very high vertical resolution (~20 m) images of echo power in the atmospheric column, which display evolving fine-scale atmospheric structures in unprecedented detail. The campaign also permitted for the very first time the evaluation of the consistency of turbulent kinetic energy dissipation rates in turbulent structures inferred from the spectral broadening of the backscattered radar signal and direct, in situ measurements by the high-frequency response velocity sensor on the UAV. The data also enabled other turbulence parameters such as the temperature structure function parameter CT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {C}_T^2 $$\end{document} and refractive index structure function parameter Cn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {C}_n^2 $$\end{document} to be measured by sensors on the UAV, along with radar-inferred refractive index structure function parameter Cn,radar2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {C}_{n,\mathrm{radar}}^2 $$\end{document}. The comprehensive dataset collected during the campaign (from the radar, the UAV, the boundary layer lidar, the ceilometer, and radiosondes) is expected to help obtain a better understanding of turbulent atmospheric structures, as well as arrive at a better interpretation of the radar data.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N32d4991566b2488baed47ad07113bece
15 Na5acc9587e2d4a32b401912622c34c93
16 sg:journal.1136393
17 schema:keywords CN
18 Colorado
19 Japan
20 MU radar
21 Observatory
22 Pitot tube sensor
23 Shigaraki
24 UAV
25 University
26 University of Colorado
27 aerial vehicles
28 atmosphere
29 atmospheric column
30 atmospheric structure
31 autonomous UAVs
32 better interpretation
33 better understanding
34 boulders
35 broadening
36 campaign
37 cold wire
38 column
39 comprehensive dataset
40 consistency
41 continuous operation
42 data
43 dataset
44 description
45 detail
46 dissipation rate
47 echo power
48 energy dissipation rate
49 evaluation
50 experiments
51 fine-scale atmospheric structures
52 fine-scale structure
53 first time
54 frequency
55 function parameters
56 goal
57 high frequency
58 images
59 immediate vicinity
60 intensive probing
61 interesting structures
62 international observational campaign
63 interpretation
64 kinetic energy dissipation rate
65 lower troposphere
66 measurements
67 middle
68 mode
69 observational campaign
70 operation
71 overview
72 parameter CN
73 parameters
74 power
75 preliminary results
76 probing
77 radar
78 radar data
79 radar experiments
80 radar images
81 radar range
82 radar signals
83 range
84 rate
85 real time
86 refractive index structure function parameter
87 resolution images
88 results
89 sensors
90 signals
91 situ measurements
92 spectral broadening
93 structure
94 structure function parameter
95 synergistic use
96 technique
97 temperature structure function parameter
98 time
99 troposphere
100 tube sensor
101 turbulence parameters
102 turbulent kinetic energy dissipation rate
103 turbulent structures
104 understanding
105 unmanned aerial vehicles
106 unprecedented detail
107 upper atmosphere (MU) observatory
108 use
109 utility
110 validity
111 vehicles
112 velocity sensor
113 vicinity
114 wire
115 schema:name Shigaraki UAV-Radar Experiment (ShUREX): overview of the campaign with some preliminary results
116 schema:pagination 19
117 schema:productId N04ffddce346745fa8be3dec95aba4084
118 Ne657e27cf08e4c718050cc9a5b489637
119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090741168
120 https://doi.org/10.1186/s40645-017-0133-x
121 schema:sdDatePublished 2022-12-01T06:36
122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
123 schema:sdPublisher Nb0e065eeb26746e7ba74a61c94abe5e8
124 schema:url https://doi.org/10.1186/s40645-017-0133-x
125 sgo:license sg:explorer/license/
126 sgo:sdDataset articles
127 rdf:type schema:ScholarlyArticle
128 N04ffddce346745fa8be3dec95aba4084 schema:name doi
129 schema:value 10.1186/s40645-017-0133-x
130 rdf:type schema:PropertyValue
131 N16bfd7ed071442cb92d4c74626e0cc02 rdf:first sg:person.010261347426.10
132 rdf:rest N8212060151b1469fb5a51fd7c16d672a
133 N1a6a4b0b5f9e4f69ac28f6ea02a8dd9f rdf:first sg:person.07513074607.55
134 rdf:rest N84e866d71fc94dac96fe91424a2c6960
135 N32d4991566b2488baed47ad07113bece schema:volumeNumber 4
136 rdf:type schema:PublicationVolume
137 N57e53842e8a94587abad391d3508ac87 rdf:first sg:person.013500043445.62
138 rdf:rest Ncc475f0069304becb288effdb7ce4c40
139 N6f62d7f6d3414400a390fa5d9c3ed416 rdf:first sg:person.013331421144.55
140 rdf:rest N16bfd7ed071442cb92d4c74626e0cc02
141 N8212060151b1469fb5a51fd7c16d672a rdf:first sg:person.015367202214.05
142 rdf:rest rdf:nil
143 N84e866d71fc94dac96fe91424a2c6960 rdf:first sg:person.016675237227.13
144 rdf:rest Nb4ac03f1398d4dea91ac7e4b0efe8201
145 Na5acc9587e2d4a32b401912622c34c93 schema:issueNumber 1
146 rdf:type schema:PublicationIssue
147 Nb0e065eeb26746e7ba74a61c94abe5e8 schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 Nb4ac03f1398d4dea91ac7e4b0efe8201 rdf:first sg:person.014054430011.55
150 rdf:rest N57e53842e8a94587abad391d3508ac87
151 Ncc475f0069304becb288effdb7ce4c40 rdf:first sg:person.011357206365.90
152 rdf:rest N6f62d7f6d3414400a390fa5d9c3ed416
153 Ne657e27cf08e4c718050cc9a5b489637 schema:name dimensions_id
154 schema:value pub.1090741168
155 rdf:type schema:PropertyValue
156 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
157 schema:name Physical Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
160 schema:name Other Physical Sciences
161 rdf:type schema:DefinedTerm
162 sg:grant.5542187 http://pending.schema.org/fundedItem sg:pub.10.1186/s40645-017-0133-x
163 rdf:type schema:MonetaryGrant
164 sg:grant.5542331 http://pending.schema.org/fundedItem sg:pub.10.1186/s40645-017-0133-x
165 rdf:type schema:MonetaryGrant
166 sg:grant.5855711 http://pending.schema.org/fundedItem sg:pub.10.1186/s40645-017-0133-x
167 rdf:type schema:MonetaryGrant
168 sg:grant.5874836 http://pending.schema.org/fundedItem sg:pub.10.1186/s40645-017-0133-x
169 rdf:type schema:MonetaryGrant
170 sg:grant.6542192 http://pending.schema.org/fundedItem sg:pub.10.1186/s40645-017-0133-x
171 rdf:type schema:MonetaryGrant
172 sg:journal.1136393 schema:issn 2197-4284
173 schema:name Progress in Earth and Planetary Science
174 schema:publisher Springer Nature
175 rdf:type schema:Periodical
176 sg:person.010261347426.10 schema:affiliation grid-institutes:grid.266190.a
177 schema:familyName Mixa
178 schema:givenName Tyler
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010261347426.10
180 rdf:type schema:Person
181 sg:person.011357206365.90 schema:affiliation grid-institutes:grid.258799.8
182 schema:familyName Tsuda
183 schema:givenName Toshitaka
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011357206365.90
185 rdf:type schema:Person
186 sg:person.013331421144.55 schema:affiliation grid-institutes:grid.462844.8
187 schema:familyName Wilson
188 schema:givenName Richard
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013331421144.55
190 rdf:type schema:Person
191 sg:person.013500043445.62 schema:affiliation grid-institutes:grid.258799.8
192 schema:familyName Hashiguchi
193 schema:givenName Hiroyuki
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013500043445.62
195 rdf:type schema:Person
196 sg:person.014054430011.55 schema:affiliation grid-institutes:grid.500499.1
197 schema:familyName Luce
198 schema:givenName Hubert
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014054430011.55
200 rdf:type schema:Person
201 sg:person.015367202214.05 schema:affiliation grid-institutes:grid.258799.8
202 schema:familyName Yabuki
203 schema:givenName Masanori
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015367202214.05
205 rdf:type schema:Person
206 sg:person.016675237227.13 schema:affiliation grid-institutes:grid.266190.a
207 schema:familyName Lawrence
208 schema:givenName Dale
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016675237227.13
210 rdf:type schema:Person
211 sg:person.07513074607.55 schema:affiliation grid-institutes:grid.266190.a
212 schema:familyName Kantha
213 schema:givenName Lakshmi
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07513074607.55
215 rdf:type schema:Person
216 sg:pub.10.1007/978-1-935704-15-7_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048248506
217 https://doi.org/10.1007/978-1-935704-15-7_23
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/978-4-431-54334-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038354111
220 https://doi.org/10.1007/978-4-431-54334-3
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s10546-012-9774-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035763227
223 https://doi.org/10.1007/s10546-012-9774-x
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s10546-015-0009-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038443228
226 https://doi.org/10.1007/s10546-015-0009-9
227 rdf:type schema:CreativeWork
228 sg:pub.10.1186/bf03353213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012041776
229 https://doi.org/10.1186/bf03353213
230 rdf:type schema:CreativeWork
231 grid-institutes:grid.258799.8 schema:alternateName Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
232 schema:name Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
233 rdf:type schema:Organization
234 grid-institutes:grid.266190.a schema:alternateName Aerospace Engineering Sciences, University of Colorado, 80309, Boulder, CO, USA
235 schema:name Aerospace Engineering Sciences, University of Colorado, 80309, Boulder, CO, USA
236 rdf:type schema:Organization
237 grid-institutes:grid.462844.8 schema:alternateName LATMOS-IPSL, Université Pierre et Marie Curie (UPMC), CNRS-INSU, Paris, France
238 schema:name LATMOS-IPSL, Université Pierre et Marie Curie (UPMC), CNRS-INSU, Paris, France
239 rdf:type schema:Organization
240 grid-institutes:grid.500499.1 schema:alternateName Mediterranean Institute of Oceanography (MIO), Université de Toulon, CNRS/INSU, UM 110, Toulon, France
241 schema:name Mediterranean Institute of Oceanography (MIO), Université de Toulon, CNRS/INSU, UM 110, Toulon, France
242 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...