A review of progress towards understanding the transient global mean surface temperature response to radiative perturbation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-07-18

AUTHORS

Masakazu Yoshimori, Masahiro Watanabe, Hideo Shiogama, Akira Oka, Ayako Abe-Ouchi, Rumi Ohgaito, Youichi Kamae

ABSTRACT

The correct understanding of the transient response to external radiative perturbation is important for the interpretation of observed climate change, the prediction of near-future climate change, and committed warming under climate stabilization scenarios, as well as the estimation of equilibrium climate sensitivity based on observation data. It has been known for some time that the radiative damping rate per unit of global mean surface temperature increase varies with time, and this inconstancy affects the transient response. Knowledge of the equilibrium response alone is insufficient, but understanding the transient response of the global mean surface temperature has made rapid progress. The recent progress accompanies the relatively new concept of the efficacies of ocean heat uptake and forcing. The ocean heat uptake efficacy associates the temperature response induced by ocean heat uptake with equilibrium temperature response, and the efficacy of forcing compares the temperature response caused by non-CO2 forcing with that by CO2 forcing.In this review article, recent studies on these efficacies are discussed, starting from the classical global feedback framework and basis of the transient response. An attempt is made to structure different studies that emphasize different aspects of the transient response and to stress the relevance of those individual studies. The implications on the definition and computation of forcing and on the estimation of the equilibrium response in climate models are also discussed. Along with these discussions, examples are provided with MIROC climate model multi-millennial simulations. More... »

PAGES

21

References to SciGraph publications

  • 2013-12-05. Climate sensitivities of two versions of FGOALS model to idealized radiative forcing in SCIENCE CHINA EARTH SCIENCES
  • 2015-03-07. Rapid Adjustments of Cloud and Hydrological Cycle to Increasing CO2: a Review in CURRENT CLIMATE CHANGE REPORTS
  • 2013-02-01. Quantifying global climate feedbacks, responses and forcing under abrupt and gradual CO2 forcing in CLIMATE DYNAMICS
  • 2012-06-13. Climate models at their limit? in NATURE
  • 2013-08-28. Recent global-warming hiatus tied to equatorial Pacific surface cooling in NATURE
  • 1997-10. Non-linear climate feedback analysis in an atmospheric general circulation model in CLIMATE DYNAMICS
  • 2015-08-16. Recent Progress in Constraining Climate Sensitivity With Model Ensembles in CURRENT CLIMATE CHANGE REPORTS
  • 2013-07-23. Relative contribution of feedback processes to Arctic amplification of temperature change in MIROC GCM in CLIMATE DYNAMICS
  • 2013-05-19. Energy budget constraints on climate response in NATURE GEOSCIENCE
  • 2014-09-25. The implications for climate sensitivity of AR5 forcing and heat uptake estimates in CLIMATE DYNAMICS
  • 2014-08-31. Contribution of natural decadal variability to global warming acceleration and hiatus in NATURE CLIMATE CHANGE
  • 2015-12-14. Implications for climate sensitivity from the response to individual forcings in NATURE CLIMATE CHANGE
  • 1985-06. Analytical solution for the effect of increasing CO2 on global mean temperature in NATURE
  • 2006-04-06. Towards quantifying uncertainty in transient climate change in CLIMATE DYNAMICS
  • 2013-08-07. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume in NATURE
  • 2015-03-30. Equilibrium climate sensitivity in light of observations over the warming hiatus in NATURE CLIMATE CHANGE
  • 2012-04-03. Deep-ocean heat uptake and equilibrium climate response in CLIMATE DYNAMICS
  • 2014-03-09. Inhomogeneous forcing and transient climate sensitivity in NATURE CLIMATE CHANGE
  • 2011-11-17. Cloud Adjustment and its Role in CO2 Radiative Forcing and Climate Sensitivity: A Review in SURVEYS IN GEOPHYSICS
  • 2012-03-23. Temperature scaling pattern dependence on representative concentration pathway emission scenarios in CLIMATIC CHANGE
  • 2015-10-26. Emergent Constraints for Cloud Feedbacks in CURRENT CLIMATE CHANGE REPORTS
  • 2008-10-26. The equilibrium sensitivity of the Earth's temperature to radiation changes in NATURE GEOSCIENCE
  • 2013-04-17. Observational estimate of climate sensitivity from changes in the rate of ocean heat uptake and comparison to CMIP5 models in CLIMATE DYNAMICS
  • 2001-04. Stratosphere adjusted radiative forcing calculationsin a comprehensive climate model in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2011-09-18. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods in NATURE CLIMATE CHANGE
  • 2003-02. Climate sensitivity and response in CLIMATE DYNAMICS
  • 2000-07. Vertical heat transports in the ocean and their effect on time-dependent climate change in CLIMATE DYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40645-016-0096-3

    DOI

    http://dx.doi.org/10.1186/s40645-016-0096-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025122489


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oceanography", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Arctic Research Center, Hokkaido University, Sapporo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.39158.36", 
              "name": [
                "Faculty of Environmental Earth Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, 060-0810, Sapporo, Japan", 
                "Arctic Research Center, Hokkaido University, Sapporo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoshimori", 
            "givenName": "Masakazu", 
            "id": "sg:person.015255532301.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255532301.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Watanabe", 
            "givenName": "Masahiro", 
            "id": "sg:person.016316106377.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316106377.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.140139.e", 
              "name": [
                "Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shiogama", 
            "givenName": "Hideo", 
            "id": "sg:person.011356656533.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oka", 
            "givenName": "Akira", 
            "id": "sg:person.013747145077.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747145077.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.410588.0", 
              "name": [
                "Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan", 
                "Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abe-Ouchi", 
            "givenName": "Ayako", 
            "id": "sg:person.01130462253.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130462253.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.410588.0", 
              "name": [
                "Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ohgaito", 
            "givenName": "Rumi", 
            "id": "sg:person.016276250042.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016276250042.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.20515.33", 
              "name": [
                "Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kamae", 
            "givenName": "Youichi", 
            "id": "sg:person.014264221555.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264221555.90"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ngeo337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004923988", 
              "https://doi.org/10.1038/ngeo337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-006-0121-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047210404", 
              "https://doi.org/10.1007/s00382-006-0121-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1677-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007305604", 
              "https://doi.org/10.1007/s00382-013-1677-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-012-0430-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008166853", 
              "https://doi.org/10.1007/s10584-012-0430-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013882518", 
              "https://doi.org/10.1038/nclimate2355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40641-015-0021-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008145862", 
              "https://doi.org/10.1007/s40641-015-0021-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033088945", 
              "https://doi.org/10.1007/s003820050193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007773311", 
              "https://doi.org/10.1038/nclimate1229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011919229", 
              "https://doi.org/10.1038/nclimate2888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10712-011-9152-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024832656", 
              "https://doi.org/10.1007/s10712-011-9152-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11430-013-4692-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000393223", 
              "https://doi.org/10.1007/s11430-013-4692-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1350-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023905729", 
              "https://doi.org/10.1007/s00382-012-1350-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034212571", 
              "https://doi.org/10.1038/nclimate2573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-002-0283-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085172498", 
              "https://doi.org/10.1007/s00382-002-0283-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1875-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000115740", 
              "https://doi.org/10.1007/s00382-013-1875-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/486183a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027625855", 
              "https://doi.org/10.1038/486183a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-014-2342-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025772326", 
              "https://doi.org/10.1007/s00382-014-2342-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1770-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001574454", 
              "https://doi.org/10.1007/s00382-013-1770-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s007040170041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036973902", 
              "https://doi.org/10.1007/s007040170041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026861987", 
              "https://doi.org/10.1038/nature12374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005504219", 
              "https://doi.org/10.1038/nature12534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1836", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035863071", 
              "https://doi.org/10.1038/ngeo1836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820000059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052523863", 
              "https://doi.org/10.1007/s003820000059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40641-015-0027-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025182217", 
              "https://doi.org/10.1007/s40641-015-0027-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40641-015-0007-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012023852", 
              "https://doi.org/10.1007/s40641-015-0007-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040830588", 
              "https://doi.org/10.1038/nclimate2136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/315649a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046634230", 
              "https://doi.org/10.1038/315649a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-07-18", 
        "datePublishedReg": "2016-07-18", 
        "description": "The correct understanding of the transient response to external radiative perturbation is important for the interpretation of observed climate change, the prediction of near-future climate change, and committed warming under climate stabilization scenarios, as well as the estimation of equilibrium climate sensitivity based on observation data. It has been known for some time that the radiative damping rate per unit of global mean surface temperature increase varies with time, and this inconstancy affects the transient response. Knowledge of the equilibrium response alone is insufficient, but understanding the transient response of the global mean surface temperature has made rapid progress. The recent progress accompanies the relatively new concept of the efficacies of ocean heat uptake and forcing. The ocean heat uptake efficacy associates the temperature response induced by ocean heat uptake with equilibrium temperature response, and the efficacy of forcing compares the temperature response caused by non-CO2 forcing with that by CO2 forcing.In this review article, recent studies on these efficacies are discussed, starting from the classical global feedback framework and basis of the transient response. An attempt is made to structure different studies that emphasize different aspects of the transient response and to stress the relevance of those individual studies. The implications on the definition and computation of forcing and on the estimation of the equilibrium response in climate models are also discussed. Along with these discussions, examples are provided with MIROC climate model multi-millennial simulations.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40645-016-0096-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5874432", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6113942", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136393", 
            "issn": [
              "2197-4284", 
              "2197-4284"
            ], 
            "name": "Progress in Earth and Planetary Science", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "ocean heat uptake", 
          "heat uptake", 
          "radiative perturbation", 
          "global mean surface temperature response", 
          "global mean surface temperature increase", 
          "temperature response", 
          "climate change", 
          "equilibrium response", 
          "global mean surface temperature", 
          "equilibrium climate sensitivity", 
          "equilibrium temperature response", 
          "multi-millennial simulation", 
          "observed climate change", 
          "mean surface temperature", 
          "surface temperature response", 
          "future climate change", 
          "surface temperature increase", 
          "climate models", 
          "climate sensitivity", 
          "surface temperature", 
          "climate stabilization scenarios", 
          "observation data", 
          "stabilization scenarios", 
          "radiative damping rate", 
          "temperature increase", 
          "review of progress", 
          "warming", 
          "uptake efficacy", 
          "CO2", 
          "perturbations", 
          "changes", 
          "damping rate", 
          "interpretation", 
          "transient response", 
          "correct understanding", 
          "estimation", 
          "scenarios", 
          "temperature", 
          "inconstancy", 
          "prediction", 
          "data", 
          "implications", 
          "simulations", 
          "units", 
          "time", 
          "Recent studies", 
          "feedback framework", 
          "model", 
          "response", 
          "understanding", 
          "study", 
          "uptake", 
          "increase", 
          "basis", 
          "example", 
          "rate", 
          "different studies", 
          "progress", 
          "recent progress", 
          "rapid progress", 
          "sensitivity", 
          "different aspects", 
          "attempt", 
          "framework", 
          "knowledge", 
          "aspects", 
          "computation", 
          "definition", 
          "new concept", 
          "discussion", 
          "relevance", 
          "concept", 
          "individual studies", 
          "review", 
          "review article", 
          "article", 
          "efficacy"
        ], 
        "name": "A review of progress towards understanding the transient global mean surface temperature response to radiative perturbation", 
        "pagination": "21", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025122489"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40645-016-0096-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40645-016-0096-3", 
          "https://app.dimensions.ai/details/publication/pub.1025122489"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_696.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40645-016-0096-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40645-016-0096-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40645-016-0096-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40645-016-0096-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40645-016-0096-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    302 TRIPLES      22 PREDICATES      128 URIs      93 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40645-016-0096-3 schema:about anzsrc-for:04
    2 anzsrc-for:0405
    3 schema:author Nedb17a1aafe04567a4bc4255a54ea001
    4 schema:citation sg:pub.10.1007/s00382-002-0283-3
    5 sg:pub.10.1007/s00382-006-0121-0
    6 sg:pub.10.1007/s00382-012-1350-z
    7 sg:pub.10.1007/s00382-013-1677-0
    8 sg:pub.10.1007/s00382-013-1770-4
    9 sg:pub.10.1007/s00382-013-1875-9
    10 sg:pub.10.1007/s00382-014-2342-y
    11 sg:pub.10.1007/s003820000059
    12 sg:pub.10.1007/s003820050193
    13 sg:pub.10.1007/s007040170041
    14 sg:pub.10.1007/s10584-012-0430-8
    15 sg:pub.10.1007/s10712-011-9152-0
    16 sg:pub.10.1007/s11430-013-4692-4
    17 sg:pub.10.1007/s40641-015-0007-5
    18 sg:pub.10.1007/s40641-015-0021-7
    19 sg:pub.10.1007/s40641-015-0027-1
    20 sg:pub.10.1038/315649a0
    21 sg:pub.10.1038/486183a
    22 sg:pub.10.1038/nature12374
    23 sg:pub.10.1038/nature12534
    24 sg:pub.10.1038/nclimate1229
    25 sg:pub.10.1038/nclimate2136
    26 sg:pub.10.1038/nclimate2355
    27 sg:pub.10.1038/nclimate2573
    28 sg:pub.10.1038/nclimate2888
    29 sg:pub.10.1038/ngeo1836
    30 sg:pub.10.1038/ngeo337
    31 schema:datePublished 2016-07-18
    32 schema:datePublishedReg 2016-07-18
    33 schema:description The correct understanding of the transient response to external radiative perturbation is important for the interpretation of observed climate change, the prediction of near-future climate change, and committed warming under climate stabilization scenarios, as well as the estimation of equilibrium climate sensitivity based on observation data. It has been known for some time that the radiative damping rate per unit of global mean surface temperature increase varies with time, and this inconstancy affects the transient response. Knowledge of the equilibrium response alone is insufficient, but understanding the transient response of the global mean surface temperature has made rapid progress. The recent progress accompanies the relatively new concept of the efficacies of ocean heat uptake and forcing. The ocean heat uptake efficacy associates the temperature response induced by ocean heat uptake with equilibrium temperature response, and the efficacy of forcing compares the temperature response caused by non-CO2 forcing with that by CO2 forcing.In this review article, recent studies on these efficacies are discussed, starting from the classical global feedback framework and basis of the transient response. An attempt is made to structure different studies that emphasize different aspects of the transient response and to stress the relevance of those individual studies. The implications on the definition and computation of forcing and on the estimation of the equilibrium response in climate models are also discussed. Along with these discussions, examples are provided with MIROC climate model multi-millennial simulations.
    34 schema:genre article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N0aad50831a12476dbc7f57ae674524da
    38 N71dac1f8ae0d43c99332db8b86b63b9e
    39 sg:journal.1136393
    40 schema:keywords CO2
    41 Recent studies
    42 article
    43 aspects
    44 attempt
    45 basis
    46 changes
    47 climate change
    48 climate models
    49 climate sensitivity
    50 climate stabilization scenarios
    51 computation
    52 concept
    53 correct understanding
    54 damping rate
    55 data
    56 definition
    57 different aspects
    58 different studies
    59 discussion
    60 efficacy
    61 equilibrium climate sensitivity
    62 equilibrium response
    63 equilibrium temperature response
    64 estimation
    65 example
    66 feedback framework
    67 framework
    68 future climate change
    69 global mean surface temperature
    70 global mean surface temperature increase
    71 global mean surface temperature response
    72 heat uptake
    73 implications
    74 inconstancy
    75 increase
    76 individual studies
    77 interpretation
    78 knowledge
    79 mean surface temperature
    80 model
    81 multi-millennial simulation
    82 new concept
    83 observation data
    84 observed climate change
    85 ocean heat uptake
    86 perturbations
    87 prediction
    88 progress
    89 radiative damping rate
    90 radiative perturbation
    91 rapid progress
    92 rate
    93 recent progress
    94 relevance
    95 response
    96 review
    97 review article
    98 review of progress
    99 scenarios
    100 sensitivity
    101 simulations
    102 stabilization scenarios
    103 study
    104 surface temperature
    105 surface temperature increase
    106 surface temperature response
    107 temperature
    108 temperature increase
    109 temperature response
    110 time
    111 transient response
    112 understanding
    113 units
    114 uptake
    115 uptake efficacy
    116 warming
    117 schema:name A review of progress towards understanding the transient global mean surface temperature response to radiative perturbation
    118 schema:pagination 21
    119 schema:productId N736c755163554e728d7ff06f334324b8
    120 N7dcd33477e4c402a9f9b616a6da934a6
    121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025122489
    122 https://doi.org/10.1186/s40645-016-0096-3
    123 schema:sdDatePublished 2022-05-20T07:32
    124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    125 schema:sdPublisher Nbbaf2ccc4dd34ac1ae1c362b64c27ec5
    126 schema:url https://doi.org/10.1186/s40645-016-0096-3
    127 sgo:license sg:explorer/license/
    128 sgo:sdDataset articles
    129 rdf:type schema:ScholarlyArticle
    130 N04f74033639e4f8a9d36b61942433efb rdf:first sg:person.011356656533.12
    131 rdf:rest N933484016a914a98a6c41b30fffef6bc
    132 N0aad50831a12476dbc7f57ae674524da schema:volumeNumber 3
    133 rdf:type schema:PublicationVolume
    134 N0ffccf8dd6f44661bd15d7acccc9099f rdf:first sg:person.016316106377.80
    135 rdf:rest N04f74033639e4f8a9d36b61942433efb
    136 N5437de6316d740259723a62440f87125 rdf:first sg:person.016276250042.50
    137 rdf:rest Nce5ef0dcb4af40b2a22430c45a08b5d4
    138 N71dac1f8ae0d43c99332db8b86b63b9e schema:issueNumber 1
    139 rdf:type schema:PublicationIssue
    140 N736c755163554e728d7ff06f334324b8 schema:name dimensions_id
    141 schema:value pub.1025122489
    142 rdf:type schema:PropertyValue
    143 N7dcd33477e4c402a9f9b616a6da934a6 schema:name doi
    144 schema:value 10.1186/s40645-016-0096-3
    145 rdf:type schema:PropertyValue
    146 N933484016a914a98a6c41b30fffef6bc rdf:first sg:person.013747145077.35
    147 rdf:rest Na11b6158289d499d9344d994b338a08c
    148 Na11b6158289d499d9344d994b338a08c rdf:first sg:person.01130462253.21
    149 rdf:rest N5437de6316d740259723a62440f87125
    150 Nbbaf2ccc4dd34ac1ae1c362b64c27ec5 schema:name Springer Nature - SN SciGraph project
    151 rdf:type schema:Organization
    152 Nce5ef0dcb4af40b2a22430c45a08b5d4 rdf:first sg:person.014264221555.90
    153 rdf:rest rdf:nil
    154 Nedb17a1aafe04567a4bc4255a54ea001 rdf:first sg:person.015255532301.12
    155 rdf:rest N0ffccf8dd6f44661bd15d7acccc9099f
    156 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Earth Sciences
    158 rdf:type schema:DefinedTerm
    159 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Oceanography
    161 rdf:type schema:DefinedTerm
    162 sg:grant.5874432 http://pending.schema.org/fundedItem sg:pub.10.1186/s40645-016-0096-3
    163 rdf:type schema:MonetaryGrant
    164 sg:grant.6113942 http://pending.schema.org/fundedItem sg:pub.10.1186/s40645-016-0096-3
    165 rdf:type schema:MonetaryGrant
    166 sg:journal.1136393 schema:issn 2197-4284
    167 schema:name Progress in Earth and Planetary Science
    168 schema:publisher Springer Nature
    169 rdf:type schema:Periodical
    170 sg:person.01130462253.21 schema:affiliation grid-institutes:grid.410588.0
    171 schema:familyName Abe-Ouchi
    172 schema:givenName Ayako
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130462253.21
    174 rdf:type schema:Person
    175 sg:person.011356656533.12 schema:affiliation grid-institutes:grid.140139.e
    176 schema:familyName Shiogama
    177 schema:givenName Hideo
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12
    179 rdf:type schema:Person
    180 sg:person.013747145077.35 schema:affiliation grid-institutes:grid.26999.3d
    181 schema:familyName Oka
    182 schema:givenName Akira
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747145077.35
    184 rdf:type schema:Person
    185 sg:person.014264221555.90 schema:affiliation grid-institutes:grid.20515.33
    186 schema:familyName Kamae
    187 schema:givenName Youichi
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264221555.90
    189 rdf:type schema:Person
    190 sg:person.015255532301.12 schema:affiliation grid-institutes:grid.39158.36
    191 schema:familyName Yoshimori
    192 schema:givenName Masakazu
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255532301.12
    194 rdf:type schema:Person
    195 sg:person.016276250042.50 schema:affiliation grid-institutes:grid.410588.0
    196 schema:familyName Ohgaito
    197 schema:givenName Rumi
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016276250042.50
    199 rdf:type schema:Person
    200 sg:person.016316106377.80 schema:affiliation grid-institutes:grid.26999.3d
    201 schema:familyName Watanabe
    202 schema:givenName Masahiro
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316106377.80
    204 rdf:type schema:Person
    205 sg:pub.10.1007/s00382-002-0283-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085172498
    206 https://doi.org/10.1007/s00382-002-0283-3
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00382-006-0121-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047210404
    209 https://doi.org/10.1007/s00382-006-0121-0
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00382-012-1350-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023905729
    212 https://doi.org/10.1007/s00382-012-1350-z
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00382-013-1677-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007305604
    215 https://doi.org/10.1007/s00382-013-1677-0
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00382-013-1770-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001574454
    218 https://doi.org/10.1007/s00382-013-1770-4
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s00382-013-1875-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000115740
    221 https://doi.org/10.1007/s00382-013-1875-9
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s00382-014-2342-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1025772326
    224 https://doi.org/10.1007/s00382-014-2342-y
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s003820000059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052523863
    227 https://doi.org/10.1007/s003820000059
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s003820050193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033088945
    230 https://doi.org/10.1007/s003820050193
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s007040170041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036973902
    233 https://doi.org/10.1007/s007040170041
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s10584-012-0430-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008166853
    236 https://doi.org/10.1007/s10584-012-0430-8
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s10712-011-9152-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024832656
    239 https://doi.org/10.1007/s10712-011-9152-0
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s11430-013-4692-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000393223
    242 https://doi.org/10.1007/s11430-013-4692-4
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s40641-015-0007-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023852
    245 https://doi.org/10.1007/s40641-015-0007-5
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s40641-015-0021-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008145862
    248 https://doi.org/10.1007/s40641-015-0021-7
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s40641-015-0027-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025182217
    251 https://doi.org/10.1007/s40641-015-0027-1
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/315649a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046634230
    254 https://doi.org/10.1038/315649a0
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/486183a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027625855
    257 https://doi.org/10.1038/486183a
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nature12374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026861987
    260 https://doi.org/10.1038/nature12374
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nature12534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005504219
    263 https://doi.org/10.1038/nature12534
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nclimate1229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007773311
    266 https://doi.org/10.1038/nclimate1229
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nclimate2136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040830588
    269 https://doi.org/10.1038/nclimate2136
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nclimate2355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013882518
    272 https://doi.org/10.1038/nclimate2355
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nclimate2573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034212571
    275 https://doi.org/10.1038/nclimate2573
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nclimate2888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011919229
    278 https://doi.org/10.1038/nclimate2888
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/ngeo1836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035863071
    281 https://doi.org/10.1038/ngeo1836
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/ngeo337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004923988
    284 https://doi.org/10.1038/ngeo337
    285 rdf:type schema:CreativeWork
    286 grid-institutes:grid.140139.e schema:alternateName Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
    287 schema:name Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
    288 rdf:type schema:Organization
    289 grid-institutes:grid.20515.33 schema:alternateName Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
    290 schema:name Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
    291 rdf:type schema:Organization
    292 grid-institutes:grid.26999.3d schema:alternateName Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
    293 schema:name Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
    294 rdf:type schema:Organization
    295 grid-institutes:grid.39158.36 schema:alternateName Arctic Research Center, Hokkaido University, Sapporo, Japan
    296 schema:name Arctic Research Center, Hokkaido University, Sapporo, Japan
    297 Faculty of Environmental Earth Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, 060-0810, Sapporo, Japan
    298 rdf:type schema:Organization
    299 grid-institutes:grid.410588.0 schema:alternateName Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
    300 schema:name Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
    301 Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
    302 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...