Dynamic contrast-enhanced MRI of malignant pleural mesothelioma: a comparative study of pharmacokinetic models and correlation with mRECIST criteria View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Martina Vivoda Tomšič, Sotirios Bisdas, Viljem Kovač, Igor Serša, Katarina Šurlan Popovič

ABSTRACT

BACKGROUND: Malignant pleural mesothelioma (MPM) is a rare and aggressive thoracic malignancy that is difficult to cure. Dynamic contrast-enhanced (DCE) MRI is a functional imaging technique used to analyze tumor microvascular properties and to monitor therapy response. Purpose of this study was to compare two tracer kinetic models, the extended Tofts (ET) and the adiabatic approximation tissue homogeneity model (AATH) for analysis of DCE-MRI and examine the value of the DCE parameters to predict response to chemotherapy in patients with MPM. METHOD: This prospective, longitudinal, single tertiary radiology center study was conducted between October 2013 and July 2015. Patient underwent DCE-MRI studies at three time points: prior to therapy, during and after cisplatin-based chemotherapy. The images were analyzed using ET and AATH models. In short-term follow-up, the patients were classified as having disease control or progressive disease according to modified response evaluation criteria in solid tumors (mRECIST) criteria. Receiver operating characteristic curve analysis was used to examine specificity and sensitivity of DCE parameters for predicting response to therapy. Comparison tests were used to analyze whether derived parameters are interchangeable between the two models. RESULTS: Nineteen patients form the study population. The results indicate that the derived parameters are not interchangeable between the models. Significant correlation with response to therapy was found for AATH-calculated median pre-treatment efflux rate (kep) showing sensitivity of 83% and specificity of 100% (AUC 0.9). ET-calculated maximal pre-treatment kep showed 100% sensitivity and specificity for predicting treatment response during the early phase of the therapy and reached a favorable trend to significant prognostic value post-therapy. CONCLUSION: Both models show potential in predicting response to therapy in MPM. High pre-treatment kep values suggest MPM disease control post-chemotherapy. More... »

PAGES

10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40644-019-0189-5

DOI

http://dx.doi.org/10.1186/s40644-019-0189-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112442068

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30813957


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Combined Chemotherapy Protocols", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cisplatin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Longitudinal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mesothelioma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pleural Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Response Evaluation Criteria in Solid Tumors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jo\u017eef Stefan International Postgraduate School", 
          "id": "https://www.grid.ac/institutes/grid.445211.7", 
          "name": [
            "Department of radiology, University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik 36, Golnik, Slovenia", 
            "Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vivoda Tom\u0161i\u010d", 
        "givenName": "Martina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Hospital for Neurology and Neurosurgery", 
          "id": "https://www.grid.ac/institutes/grid.436283.8", 
          "name": [
            "Lysholm Department of Neuroradiology, National Hospital of Neurology and Neurosurgery, London, UCLH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bisdas", 
        "givenName": "Sotirios", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Oncology Ljubljana", 
          "id": "https://www.grid.ac/institutes/grid.418872.0", 
          "name": [
            "Department of Radiotherapy, Institute of Oncology Ljubljana, Zalo\u0161ka cesta 2, 1000, Ljubljana, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kova\u010d", 
        "givenName": "Viljem", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jo\u017eef Stefan Institute", 
          "id": "https://www.grid.ac/institutes/grid.11375.31", 
          "name": [
            "Jozef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ser\u0161a", 
        "givenName": "Igor", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ljubljana", 
          "id": "https://www.grid.ac/institutes/grid.8954.0", 
          "name": [
            "Institute of Radiology, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia", 
            "Faculty of Medicine, University of Ljubljana, Korytkova ulica 2, 1000, Ljubljana, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u0160urlan Popovi\u010d", 
        "givenName": "Katarina", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1378/chest.129.6.1570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000653317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001864350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001864350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdh059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004445038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2015.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005482144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2007.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008490535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008723230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2392021099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009383841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tranon.2015.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009533198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.1093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010823058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1448-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014535457", 
          "https://doi.org/10.1007/s00259-010-1448-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1448-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014535457", 
          "https://doi.org/10.1007/s00259-010-1448-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0566-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017723117", 
          "https://doi.org/10.1007/s00330-006-0566-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0566-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017723117", 
          "https://doi.org/10.1007/s00330-006-0566-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/cad.0b013e32834d7a1c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018086187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/cad.0b013e32834d7a1c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018086187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00062-014-0328-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022913755", 
          "https://doi.org/10.1007/s00062-014-0328-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000209607.99200.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024642164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000209607.99200.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024642164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2015.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038970157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039022517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039022517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040299946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/cad.0b013e32833ab7a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040702753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/cad.0b013e32833ab7a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040702753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/cad.0b013e32833ab7a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040702753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-11-2464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046101468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048246919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.1680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051771873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.2940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051781024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053411931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2003.11.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064203976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-002-1654-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075222270", 
          "https://doi.org/10.1007/s00330-002-1654-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077176275", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3978/j.issn.2223-3652.2014.03.01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078912268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.athoracsur.2017.09.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099615874"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Malignant pleural mesothelioma (MPM) is a rare and aggressive thoracic malignancy that is difficult to cure. Dynamic contrast-enhanced (DCE) MRI is a functional imaging technique used to analyze tumor microvascular properties and to monitor therapy response. Purpose of this study was to compare two tracer kinetic models, the extended Tofts (ET) and the adiabatic approximation tissue homogeneity model (AATH) for analysis of DCE-MRI and examine the value of the DCE parameters to predict response to chemotherapy in patients with MPM.\nMETHOD: This prospective, longitudinal, single tertiary radiology center study was conducted between October 2013 and July 2015. Patient underwent DCE-MRI studies at three time points: prior to therapy, during and after cisplatin-based chemotherapy. The images were analyzed using ET and AATH models. In short-term follow-up, the patients were classified as having disease control or progressive disease according to modified response evaluation criteria in solid tumors (mRECIST) criteria. Receiver operating characteristic curve analysis was used to examine specificity and sensitivity of DCE parameters for predicting response to therapy. Comparison tests were used to analyze whether derived parameters are interchangeable between the two models.\nRESULTS: Nineteen patients form the study population. The results indicate that the derived parameters are not interchangeable between the models. Significant correlation with response to therapy was found for AATH-calculated median pre-treatment efflux rate (kep) showing sensitivity of 83% and specificity of 100% (AUC 0.9). ET-calculated maximal pre-treatment kep showed 100% sensitivity and specificity for predicting treatment response during the early phase of the therapy and reached a favorable trend to significant prognostic value post-therapy.\nCONCLUSION: Both models show potential in predicting response to therapy in MPM. High pre-treatment kep values suggest MPM disease control post-chemotherapy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40644-019-0189-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032121", 
        "issn": [
          "1740-5025", 
          "1470-7330"
        ], 
        "name": "Cancer Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Dynamic contrast-enhanced MRI of malignant pleural mesothelioma: a comparative study of pharmacokinetic models and correlation with mRECIST criteria", 
    "pagination": "10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fad53d54a3e75699bb4c4770ff57d7639789c03a415d05e11bd1885fb18ad4f6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30813957"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101172931"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40644-019-0189-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112442068"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40644-019-0189-5", 
      "https://app.dimensions.ai/details/publication/pub.1112442068"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78947_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40644-019-0189-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40644-019-0189-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40644-019-0189-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40644-019-0189-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40644-019-0189-5'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      21 PREDICATES      74 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40644-019-0189-5 schema:about N04e3d11da1c74e3bba40881561850658
2 N0a0529c3d20747a2990acd1ada66b5ce
3 N17fe59be0ffe4e21ba22e39d3af668fe
4 N26fedbb2e3394471bbd0c274919b13af
5 N2c4a358d6e6f4f1e94dee14eca69d0d4
6 N311f6d730dd149f6a922cf7be20bb6a4
7 N32ac4110762b4002aece58d0222d6c7a
8 N4b05d58acd9f4ebe9259cf2bf973f40a
9 N74940cf5fe464240bb1b9911cdececc9
10 N7e4ce8726f724e82bcad7e3dad92eb49
11 N808286243ef64948a228a5c098264614
12 N83e2d554ca6e462186426ba76e41a56a
13 N9e4db5ab84434180af588271b7db4985
14 Naded846dac7c4d46a8ad782d2bda071a
15 Nc5150cc7da804623869377307355af65
16 Ndb8cf273d1de4b34888b3326af33c36a
17 Nf58782dc21b64bcf8a9ae8de7836b9eb
18 anzsrc-for:11
19 anzsrc-for:1112
20 schema:author N86c257fcba8b4789903ebd69b4fe2bcc
21 schema:citation sg:pub.10.1007/s00062-014-0328-0
22 sg:pub.10.1007/s00259-010-1448-7
23 sg:pub.10.1007/s00330-002-1654-1
24 sg:pub.10.1007/s00330-006-0566-x
25 https://app.dimensions.ai/details/publication/pub.1077176275
26 https://doi.org/10.1002/jmri.21060
27 https://doi.org/10.1002/jmri.22795
28 https://doi.org/10.1002/jmri.24061
29 https://doi.org/10.1002/mrm.21814
30 https://doi.org/10.1002/mrm.22217
31 https://doi.org/10.1002/mrm.22573
32 https://doi.org/10.1002/nbm.1093
33 https://doi.org/10.1002/nbm.1680
34 https://doi.org/10.1002/nbm.2940
35 https://doi.org/10.1016/j.acra.2007.12.014
36 https://doi.org/10.1016/j.athoracsur.2017.09.036
37 https://doi.org/10.1016/j.lungcan.2015.07.011
38 https://doi.org/10.1016/j.lungcan.2015.08.012
39 https://doi.org/10.1016/j.tranon.2015.11.016
40 https://doi.org/10.1093/annonc/mdh059
41 https://doi.org/10.1097/01.rli.0000209607.99200.53
42 https://doi.org/10.1097/cad.0b013e32833ab7a0
43 https://doi.org/10.1097/cad.0b013e32834d7a1c
44 https://doi.org/10.1148/radiol.2392021099
45 https://doi.org/10.1158/0008-5472.can-11-2464
46 https://doi.org/10.1200/jco.2003.11.136
47 https://doi.org/10.1378/chest.129.6.1570
48 https://doi.org/10.3978/j.issn.2223-3652.2014.03.01
49 schema:datePublished 2019-12
50 schema:datePublishedReg 2019-12-01
51 schema:description BACKGROUND: Malignant pleural mesothelioma (MPM) is a rare and aggressive thoracic malignancy that is difficult to cure. Dynamic contrast-enhanced (DCE) MRI is a functional imaging technique used to analyze tumor microvascular properties and to monitor therapy response. Purpose of this study was to compare two tracer kinetic models, the extended Tofts (ET) and the adiabatic approximation tissue homogeneity model (AATH) for analysis of DCE-MRI and examine the value of the DCE parameters to predict response to chemotherapy in patients with MPM. METHOD: This prospective, longitudinal, single tertiary radiology center study was conducted between October 2013 and July 2015. Patient underwent DCE-MRI studies at three time points: prior to therapy, during and after cisplatin-based chemotherapy. The images were analyzed using ET and AATH models. In short-term follow-up, the patients were classified as having disease control or progressive disease according to modified response evaluation criteria in solid tumors (mRECIST) criteria. Receiver operating characteristic curve analysis was used to examine specificity and sensitivity of DCE parameters for predicting response to therapy. Comparison tests were used to analyze whether derived parameters are interchangeable between the two models. RESULTS: Nineteen patients form the study population. The results indicate that the derived parameters are not interchangeable between the models. Significant correlation with response to therapy was found for AATH-calculated median pre-treatment efflux rate (kep) showing sensitivity of 83% and specificity of 100% (AUC 0.9). ET-calculated maximal pre-treatment kep showed 100% sensitivity and specificity for predicting treatment response during the early phase of the therapy and reached a favorable trend to significant prognostic value post-therapy. CONCLUSION: Both models show potential in predicting response to therapy in MPM. High pre-treatment kep values suggest MPM disease control post-chemotherapy.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N58d8fdefc1b44ab9b89607dd102be595
56 Na5538075f6644cdbb37945d4384a96fc
57 sg:journal.1032121
58 schema:name Dynamic contrast-enhanced MRI of malignant pleural mesothelioma: a comparative study of pharmacokinetic models and correlation with mRECIST criteria
59 schema:pagination 10
60 schema:productId N21b48bf34c0e43e4842361d4a4de81e4
61 N82829560bd47488d8ee6ebe0412a2d0b
62 N8853daf8db954ba2bd7bc10b40ee7381
63 N8f3bf6a7c2a049ca91002b1ca113f27d
64 Nd9c3d6add6f447f49c76cff4a244433c
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112442068
66 https://doi.org/10.1186/s40644-019-0189-5
67 schema:sdDatePublished 2019-04-11T13:18
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nfc99224454874d8491e78d90a79c9e7f
70 schema:url https://link.springer.com/10.1186%2Fs40644-019-0189-5
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N04e3d11da1c74e3bba40881561850658 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Mesothelioma
76 rdf:type schema:DefinedTerm
77 N09c0b5969e954b3ab7f1395f6121755c rdf:first Nf0493bc208be4d40bf0bbda7c02ca046
78 rdf:rest rdf:nil
79 N0a0529c3d20747a2990acd1ada66b5ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Antineoplastic Combined Chemotherapy Protocols
81 rdf:type schema:DefinedTerm
82 N17fe59be0ffe4e21ba22e39d3af668fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Longitudinal Studies
84 rdf:type schema:DefinedTerm
85 N21b48bf34c0e43e4842361d4a4de81e4 schema:name nlm_unique_id
86 schema:value 101172931
87 rdf:type schema:PropertyValue
88 N26fedbb2e3394471bbd0c274919b13af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Middle Aged
90 rdf:type schema:DefinedTerm
91 N2c4a358d6e6f4f1e94dee14eca69d0d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Contrast Media
93 rdf:type schema:DefinedTerm
94 N311f6d730dd149f6a922cf7be20bb6a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Lung Neoplasms
96 rdf:type schema:DefinedTerm
97 N32ac4110762b4002aece58d0222d6c7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Aged
99 rdf:type schema:DefinedTerm
100 N4b05d58acd9f4ebe9259cf2bf973f40a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Pleural Neoplasms
102 rdf:type schema:DefinedTerm
103 N58d8fdefc1b44ab9b89607dd102be595 schema:issueNumber 1
104 rdf:type schema:PublicationIssue
105 N634e1cf576eb4f3880268d01cc589962 rdf:first Nba7d6f95da0947d493233347edd6a811
106 rdf:rest N09c0b5969e954b3ab7f1395f6121755c
107 N74940cf5fe464240bb1b9911cdececc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Humans
109 rdf:type schema:DefinedTerm
110 N7e4ce8726f724e82bcad7e3dad92eb49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Male
112 rdf:type schema:DefinedTerm
113 N7f2c8492c94541978855287ecee90654 schema:affiliation https://www.grid.ac/institutes/grid.445211.7
114 schema:familyName Vivoda Tomšič
115 schema:givenName Martina
116 rdf:type schema:Person
117 N808286243ef64948a228a5c098264614 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Magnetic Resonance Imaging
119 rdf:type schema:DefinedTerm
120 N82829560bd47488d8ee6ebe0412a2d0b schema:name doi
121 schema:value 10.1186/s40644-019-0189-5
122 rdf:type schema:PropertyValue
123 N83e2d554ca6e462186426ba76e41a56a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Aged, 80 and over
125 rdf:type schema:DefinedTerm
126 N86c257fcba8b4789903ebd69b4fe2bcc rdf:first N7f2c8492c94541978855287ecee90654
127 rdf:rest Na882eb9e1eeb4815bd61d2a5643d3624
128 N8853daf8db954ba2bd7bc10b40ee7381 schema:name readcube_id
129 schema:value fad53d54a3e75699bb4c4770ff57d7639789c03a415d05e11bd1885fb18ad4f6
130 rdf:type schema:PropertyValue
131 N8885e575ea194e9d86be8c0b7bb83661 rdf:first N9038686827d545ae9cbeb0c5b1298a14
132 rdf:rest N634e1cf576eb4f3880268d01cc589962
133 N8f3bf6a7c2a049ca91002b1ca113f27d schema:name dimensions_id
134 schema:value pub.1112442068
135 rdf:type schema:PropertyValue
136 N9038686827d545ae9cbeb0c5b1298a14 schema:affiliation https://www.grid.ac/institutes/grid.418872.0
137 schema:familyName Kovač
138 schema:givenName Viljem
139 rdf:type schema:Person
140 N9e4db5ab84434180af588271b7db4985 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Response Evaluation Criteria in Solid Tumors
142 rdf:type schema:DefinedTerm
143 Na5538075f6644cdbb37945d4384a96fc schema:volumeNumber 19
144 rdf:type schema:PublicationVolume
145 Na882eb9e1eeb4815bd61d2a5643d3624 rdf:first Ne0c7767d6e7640b08f2fb9e504f0236c
146 rdf:rest N8885e575ea194e9d86be8c0b7bb83661
147 Naded846dac7c4d46a8ad782d2bda071a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Prognosis
149 rdf:type schema:DefinedTerm
150 Nba7d6f95da0947d493233347edd6a811 schema:affiliation https://www.grid.ac/institutes/grid.11375.31
151 schema:familyName Serša
152 schema:givenName Igor
153 rdf:type schema:Person
154 Nc5150cc7da804623869377307355af65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Prospective Studies
156 rdf:type schema:DefinedTerm
157 Nd9c3d6add6f447f49c76cff4a244433c schema:name pubmed_id
158 schema:value 30813957
159 rdf:type schema:PropertyValue
160 Ndb8cf273d1de4b34888b3326af33c36a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Cisplatin
162 rdf:type schema:DefinedTerm
163 Ne0c7767d6e7640b08f2fb9e504f0236c schema:affiliation https://www.grid.ac/institutes/grid.436283.8
164 schema:familyName Bisdas
165 schema:givenName Sotirios
166 rdf:type schema:Person
167 Nf0493bc208be4d40bf0bbda7c02ca046 schema:affiliation https://www.grid.ac/institutes/grid.8954.0
168 schema:familyName Šurlan Popovič
169 schema:givenName Katarina
170 rdf:type schema:Person
171 Nf58782dc21b64bcf8a9ae8de7836b9eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Female
173 rdf:type schema:DefinedTerm
174 Nfc99224454874d8491e78d90a79c9e7f schema:name Springer Nature - SN SciGraph project
175 rdf:type schema:Organization
176 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
177 schema:name Medical and Health Sciences
178 rdf:type schema:DefinedTerm
179 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
180 schema:name Oncology and Carcinogenesis
181 rdf:type schema:DefinedTerm
182 sg:journal.1032121 schema:issn 1470-7330
183 1740-5025
184 schema:name Cancer Imaging
185 rdf:type schema:Periodical
186 sg:pub.10.1007/s00062-014-0328-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022913755
187 https://doi.org/10.1007/s00062-014-0328-0
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s00259-010-1448-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014535457
190 https://doi.org/10.1007/s00259-010-1448-7
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s00330-002-1654-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075222270
193 https://doi.org/10.1007/s00330-002-1654-1
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s00330-006-0566-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017723117
196 https://doi.org/10.1007/s00330-006-0566-x
197 rdf:type schema:CreativeWork
198 https://app.dimensions.ai/details/publication/pub.1077176275 schema:CreativeWork
199 https://doi.org/10.1002/jmri.21060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008723230
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/jmri.22795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053411931
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1002/jmri.24061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048246919
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1002/mrm.21814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039022517
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1002/mrm.22217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001864350
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1002/mrm.22573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040299946
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1002/nbm.1093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010823058
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1002/nbm.1680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051771873
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1002/nbm.2940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051781024
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.acra.2007.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008490535
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.athoracsur.2017.09.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099615874
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.lungcan.2015.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038970157
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.lungcan.2015.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005482144
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.tranon.2015.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009533198
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/annonc/mdh059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004445038
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1097/01.rli.0000209607.99200.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024642164
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1097/cad.0b013e32833ab7a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040702753
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1097/cad.0b013e32834d7a1c schema:sameAs https://app.dimensions.ai/details/publication/pub.1018086187
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1148/radiol.2392021099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009383841
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1158/0008-5472.can-11-2464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046101468
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1200/jco.2003.11.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064203976
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1378/chest.129.6.1570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000653317
242 rdf:type schema:CreativeWork
243 https://doi.org/10.3978/j.issn.2223-3652.2014.03.01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078912268
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.11375.31 schema:alternateName Jožef Stefan Institute
246 schema:name Jozef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.418872.0 schema:alternateName Institute of Oncology Ljubljana
249 schema:name Department of Radiotherapy, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000, Ljubljana, Slovenia
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.436283.8 schema:alternateName National Hospital for Neurology and Neurosurgery
252 schema:name Lysholm Department of Neuroradiology, National Hospital of Neurology and Neurosurgery, London, UCLH, UK
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.445211.7 schema:alternateName Jožef Stefan International Postgraduate School
255 schema:name Department of radiology, University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik 36, Golnik, Slovenia
256 Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
257 rdf:type schema:Organization
258 https://www.grid.ac/institutes/grid.8954.0 schema:alternateName University of Ljubljana
259 schema:name Faculty of Medicine, University of Ljubljana, Korytkova ulica 2, 1000, Ljubljana, Slovenia
260 Institute of Radiology, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...