LI-RADS v2017 for liver nodules: how we read and report View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-04-24

AUTHORS

Wolfgang Schima, Jay Heiken

ABSTRACT

The Liver Imaging Reporting and Data System (LI-RADS) standardizes the interpretation and reporting of imaging examinations in patients at risk for hepatocellular carcinoma (HCC). For focal liver observations it assigns categories (LR-1 to 5, LR-M, LR-TIV), which reflect the relative probability of benignity or malignancy of the respective observation. The categories assigned are based on major and ancillary image features, which have been developed by the American College of Radiology (ACR) and validated in many studies. This review summarizes the relevant CT and MRI features and presents an image-guided approach for readers not familiar with LI-RADS on how to use the system. The widespread adoption of LI-RADS for reporting would help reduce inter-reader variability and improve communication among radiologists, hepatologists, hepatic surgeons and oncologists, thus leading to improved patient management. More... »

PAGES

14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40644-018-0149-5

DOI

http://dx.doi.org/10.1186/s40644-018-0149-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103626364

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29690933


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Hepatocellular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Practice Guidelines as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Diagnostic and Interventional Radiology, Goettlicher Heiland Krankenhaus, Barmherzige Schwestern Krankenhaus, and St. Josef Krankenhaus, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, Goettlicher Heiland Krankenhaus, Barmherzige Schwestern Krankenhaus, and St. Josef Krankenhaus, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schima", 
        "givenName": "Wolfgang", 
        "id": "sg:person.0643031251.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643031251.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic, Rochester, Minnesota USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Mayo Clinic, Rochester, Minnesota USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heiken", 
        "givenName": "Jay", 
        "id": "sg:person.01046263323.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046263323.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00261-014-0227-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017674237", 
          "https://doi.org/10.1007/s00261-014-0227-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-016-0762-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001369740", 
          "https://doi.org/10.1007/s00261-016-0762-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2964-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039020783", 
          "https://doi.org/10.1007/s00330-013-2964-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-24", 
    "datePublishedReg": "2018-04-24", 
    "description": "The Liver Imaging Reporting and Data System (LI-RADS) standardizes the interpretation and reporting of imaging examinations in patients at risk for hepatocellular carcinoma (HCC). For focal liver observations it assigns categories (LR-1 to 5, LR-M, LR-TIV), which reflect the relative probability of benignity or malignancy of the respective observation. The categories assigned are based on major and ancillary image features, which have been developed by the American College of Radiology (ACR) and validated in many studies. This review summarizes the relevant CT and MRI features and presents an image-guided approach for readers not familiar with LI-RADS on how to use the system. The widespread adoption of LI-RADS for reporting would help reduce inter-reader variability and improve communication among radiologists, hepatologists, hepatic surgeons and oncologists, thus leading to improved patient management.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40644-018-0149-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032121", 
        "issn": [
          "1740-5025", 
          "1470-7330"
        ], 
        "name": "Cancer Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "hepatocellular carcinoma", 
      "focal liver observations", 
      "Liver Imaging Reporting", 
      "LI-RADS v2017", 
      "image-guided approach", 
      "hepatic surgeons", 
      "relevant CT", 
      "patient management", 
      "liver nodules", 
      "American College", 
      "LI-RADS", 
      "LI-RADS", 
      "liver observations", 
      "inter-reader variability", 
      "Imaging Reporting", 
      "reporting", 
      "hepatologists", 
      "patients", 
      "carcinoma", 
      "malignancy", 
      "oncologists", 
      "Data System", 
      "surgeons", 
      "MRI", 
      "CT", 
      "radiologists", 
      "risk", 
      "radiology", 
      "nodules", 
      "examination", 
      "respective observations", 
      "benignity", 
      "review", 
      "categories", 
      "management", 
      "study", 
      "widespread adoption", 
      "College", 
      "observations", 
      "variability", 
      "features", 
      "system", 
      "probability", 
      "approach", 
      "communication", 
      "interpretation", 
      "relative probability", 
      "adoption", 
      "readers", 
      "image features", 
      "ancillary image features", 
      "v2017"
    ], 
    "name": "LI-RADS v2017 for liver nodules: how we read and report", 
    "pagination": "14", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103626364"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40644-018-0149-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29690933"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40644-018-0149-5", 
      "https://app.dimensions.ai/details/publication/pub.1103626364"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_777.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40644-018-0149-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40644-018-0149-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40644-018-0149-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40644-018-0149-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40644-018-0149-5'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      22 PREDICATES      88 URIs      77 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40644-018-0149-5 schema:about N1473e57940804a53808f269ad8c86047
2 N1da1ac036a7d4e9bb6d278b1468ea8ae
3 N4c89b97279de40f68147ae0fdf361081
4 N8b885ea65ca2483096c644e16cc0c7eb
5 Na9825cd39e2c46d6a7a1e5961c9e90b7
6 Nad947c35095942c7bd3bb667d6c18f9b
7 Neafa24b62569417bbfd3d84346d9b459
8 Nf683b583316e4922a0a8cf05d034f197
9 anzsrc-for:11
10 anzsrc-for:1103
11 schema:author N05d01465f5b24ad8ad945b70dac5745a
12 schema:citation sg:pub.10.1007/s00261-014-0227-5
13 sg:pub.10.1007/s00261-016-0762-3
14 sg:pub.10.1007/s00330-013-2964-1
15 schema:datePublished 2018-04-24
16 schema:datePublishedReg 2018-04-24
17 schema:description The Liver Imaging Reporting and Data System (LI-RADS) standardizes the interpretation and reporting of imaging examinations in patients at risk for hepatocellular carcinoma (HCC). For focal liver observations it assigns categories (LR-1 to 5, LR-M, LR-TIV), which reflect the relative probability of benignity or malignancy of the respective observation. The categories assigned are based on major and ancillary image features, which have been developed by the American College of Radiology (ACR) and validated in many studies. This review summarizes the relevant CT and MRI features and presents an image-guided approach for readers not familiar with LI-RADS on how to use the system. The widespread adoption of LI-RADS for reporting would help reduce inter-reader variability and improve communication among radiologists, hepatologists, hepatic surgeons and oncologists, thus leading to improved patient management.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N4535c02786094bd59607a1cd9809289c
22 Nada11ea7cd514844a2059ab3ebfe6efd
23 sg:journal.1032121
24 schema:keywords American College
25 CT
26 College
27 Data System
28 Imaging Reporting
29 LI-RADS
30 LI-RADS v2017
31 Liver Imaging Reporting
32 MRI
33 adoption
34 ancillary image features
35 approach
36 benignity
37 carcinoma
38 categories
39 communication
40 examination
41 features
42 focal liver observations
43 hepatic surgeons
44 hepatocellular carcinoma
45 hepatologists
46 image features
47 image-guided approach
48 inter-reader variability
49 interpretation
50 liver nodules
51 liver observations
52 malignancy
53 management
54 nodules
55 observations
56 oncologists
57 patient management
58 patients
59 probability
60 radiologists
61 radiology
62 readers
63 relative probability
64 relevant CT
65 reporting
66 respective observations
67 review
68 risk
69 study
70 surgeons
71 system
72 v2017
73 variability
74 widespread adoption
75 schema:name LI-RADS v2017 for liver nodules: how we read and report
76 schema:pagination 14
77 schema:productId N1f2a38459ebf435d86557b4b17f0790d
78 Neba3522a195b4b588e0e154e87cf69fd
79 Nfc35936f81b741ab9e044ec2e5b1592c
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103626364
81 https://doi.org/10.1186/s40644-018-0149-5
82 schema:sdDatePublished 2022-01-01T18:50
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N796c13a26d2f4c48a87fc1103b9e816d
85 schema:url https://doi.org/10.1186/s40644-018-0149-5
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N00c9f8be7efd4501b97fbd708fb62fe2 rdf:first sg:person.01046263323.87
90 rdf:rest rdf:nil
91 N05d01465f5b24ad8ad945b70dac5745a rdf:first sg:person.0643031251.50
92 rdf:rest N00c9f8be7efd4501b97fbd708fb62fe2
93 N1473e57940804a53808f269ad8c86047 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Radiographic Image Interpretation, Computer-Assisted
95 rdf:type schema:DefinedTerm
96 N1da1ac036a7d4e9bb6d278b1468ea8ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Liver Neoplasms
98 rdf:type schema:DefinedTerm
99 N1f2a38459ebf435d86557b4b17f0790d schema:name dimensions_id
100 schema:value pub.1103626364
101 rdf:type schema:PropertyValue
102 N4535c02786094bd59607a1cd9809289c schema:volumeNumber 18
103 rdf:type schema:PublicationVolume
104 N4c89b97279de40f68147ae0fdf361081 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Magnetic Resonance Imaging
106 rdf:type schema:DefinedTerm
107 N796c13a26d2f4c48a87fc1103b9e816d schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N8b885ea65ca2483096c644e16cc0c7eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Carcinoma, Hepatocellular
111 rdf:type schema:DefinedTerm
112 Na9825cd39e2c46d6a7a1e5961c9e90b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Practice Guidelines as Topic
114 rdf:type schema:DefinedTerm
115 Nad947c35095942c7bd3bb667d6c18f9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Tomography, X-Ray Computed
117 rdf:type schema:DefinedTerm
118 Nada11ea7cd514844a2059ab3ebfe6efd schema:issueNumber 1
119 rdf:type schema:PublicationIssue
120 Neafa24b62569417bbfd3d84346d9b459 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Research Design
122 rdf:type schema:DefinedTerm
123 Neba3522a195b4b588e0e154e87cf69fd schema:name pubmed_id
124 schema:value 29690933
125 rdf:type schema:PropertyValue
126 Nf683b583316e4922a0a8cf05d034f197 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Humans
128 rdf:type schema:DefinedTerm
129 Nfc35936f81b741ab9e044ec2e5b1592c schema:name doi
130 schema:value 10.1186/s40644-018-0149-5
131 rdf:type schema:PropertyValue
132 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
133 schema:name Medical and Health Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
136 schema:name Clinical Sciences
137 rdf:type schema:DefinedTerm
138 sg:journal.1032121 schema:issn 1470-7330
139 1740-5025
140 schema:name Cancer Imaging
141 schema:publisher Springer Nature
142 rdf:type schema:Periodical
143 sg:person.01046263323.87 schema:affiliation grid-institutes:grid.66875.3a
144 schema:familyName Heiken
145 schema:givenName Jay
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046263323.87
147 rdf:type schema:Person
148 sg:person.0643031251.50 schema:affiliation grid-institutes:None
149 schema:familyName Schima
150 schema:givenName Wolfgang
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643031251.50
152 rdf:type schema:Person
153 sg:pub.10.1007/s00261-014-0227-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017674237
154 https://doi.org/10.1007/s00261-014-0227-5
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00261-016-0762-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001369740
157 https://doi.org/10.1007/s00261-016-0762-3
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00330-013-2964-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039020783
160 https://doi.org/10.1007/s00330-013-2964-1
161 rdf:type schema:CreativeWork
162 grid-institutes:None schema:alternateName Department of Diagnostic and Interventional Radiology, Goettlicher Heiland Krankenhaus, Barmherzige Schwestern Krankenhaus, and St. Josef Krankenhaus, Vienna, Austria
163 schema:name Department of Diagnostic and Interventional Radiology, Goettlicher Heiland Krankenhaus, Barmherzige Schwestern Krankenhaus, and St. Josef Krankenhaus, Vienna, Austria
164 rdf:type schema:Organization
165 grid-institutes:grid.66875.3a schema:alternateName Mayo Clinic, Rochester, Minnesota USA
166 schema:name Mayo Clinic, Rochester, Minnesota USA
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...