LI-RADS v2017 for liver nodules: how we read and report View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-04-24

AUTHORS

Wolfgang Schima, Jay Heiken

ABSTRACT

The Liver Imaging Reporting and Data System (LI-RADS) standardizes the interpretation and reporting of imaging examinations in patients at risk for hepatocellular carcinoma (HCC). For focal liver observations it assigns categories (LR-1 to 5, LR-M, LR-TIV), which reflect the relative probability of benignity or malignancy of the respective observation. The categories assigned are based on major and ancillary image features, which have been developed by the American College of Radiology (ACR) and validated in many studies. This review summarizes the relevant CT and MRI features and presents an image-guided approach for readers not familiar with LI-RADS on how to use the system. The widespread adoption of LI-RADS for reporting would help reduce inter-reader variability and improve communication among radiologists, hepatologists, hepatic surgeons and oncologists, thus leading to improved patient management. More... »

PAGES

14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40644-018-0149-5

DOI

http://dx.doi.org/10.1186/s40644-018-0149-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103626364

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29690933


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Hepatocellular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Practice Guidelines as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Diagnostic and Interventional Radiology, Goettlicher Heiland Krankenhaus, Barmherzige Schwestern Krankenhaus, and St. Josef Krankenhaus, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, Goettlicher Heiland Krankenhaus, Barmherzige Schwestern Krankenhaus, and St. Josef Krankenhaus, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schima", 
        "givenName": "Wolfgang", 
        "id": "sg:person.0643031251.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643031251.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic, Rochester, Minnesota USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Mayo Clinic, Rochester, Minnesota USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heiken", 
        "givenName": "Jay", 
        "id": "sg:person.01046263323.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046263323.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00261-014-0227-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017674237", 
          "https://doi.org/10.1007/s00261-014-0227-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-016-0762-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001369740", 
          "https://doi.org/10.1007/s00261-016-0762-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2964-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039020783", 
          "https://doi.org/10.1007/s00330-013-2964-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-24", 
    "datePublishedReg": "2018-04-24", 
    "description": "The Liver Imaging Reporting and Data System (LI-RADS) standardizes the interpretation and reporting of imaging examinations in patients at risk for hepatocellular carcinoma (HCC). For focal liver observations it assigns categories (LR-1 to 5, LR-M, LR-TIV), which reflect the relative probability of benignity or malignancy of the respective observation. The categories assigned are based on major and ancillary image features, which have been developed by the American College of Radiology (ACR) and validated in many studies. This review summarizes the relevant CT and MRI features and presents an image-guided approach for readers not familiar with LI-RADS on how to use the system. The widespread adoption of LI-RADS for reporting would help reduce inter-reader variability and improve communication among radiologists, hepatologists, hepatic surgeons and oncologists, thus leading to improved patient management.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40644-018-0149-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032121", 
        "issn": [
          "1740-5025", 
          "1470-7330"
        ], 
        "name": "Cancer Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "hepatocellular carcinoma", 
      "focal liver observations", 
      "Liver Imaging Reporting", 
      "LI-RADS v2017", 
      "image-guided approach", 
      "hepatic surgeons", 
      "relevant CT", 
      "patient management", 
      "liver nodules", 
      "American College", 
      "LI-RADS", 
      "LI-RADS", 
      "liver observations", 
      "inter-reader variability", 
      "Imaging Reporting", 
      "reporting", 
      "hepatologists", 
      "patients", 
      "carcinoma", 
      "malignancy", 
      "oncologists", 
      "Data System", 
      "surgeons", 
      "MRI", 
      "CT", 
      "radiologists", 
      "risk", 
      "radiology", 
      "nodules", 
      "examination", 
      "respective observations", 
      "benignity", 
      "review", 
      "categories", 
      "management", 
      "study", 
      "widespread adoption", 
      "College", 
      "observations", 
      "variability", 
      "features", 
      "system", 
      "probability", 
      "approach", 
      "communication", 
      "interpretation", 
      "relative probability", 
      "adoption", 
      "readers", 
      "image features", 
      "ancillary image features", 
      "v2017"
    ], 
    "name": "LI-RADS v2017 for liver nodules: how we read and report", 
    "pagination": "14", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103626364"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40644-018-0149-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29690933"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40644-018-0149-5", 
      "https://app.dimensions.ai/details/publication/pub.1103626364"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_777.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40644-018-0149-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40644-018-0149-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40644-018-0149-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40644-018-0149-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40644-018-0149-5'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      22 PREDICATES      88 URIs      77 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40644-018-0149-5 schema:about N1797f36e47a64c3da10127548ccf5e50
2 N422f938a10f34b54a076a290fd7f02c2
3 N509c1b0fbb104cd098abcdf468797670
4 N81d3a9218e1c463fb4cb58cd357cc9cc
5 Nc0a96edb1c8f4501abc8b387d1713d51
6 Ne3ca6fec58db4bc6adf75a9d1a37e244
7 Ne59cb400c6e542138be980c9f5522ce9
8 Nfefd11b768b74d2f8478062fd1520c72
9 anzsrc-for:11
10 anzsrc-for:1103
11 schema:author N4262c29470e54816a8c86abc1accb871
12 schema:citation sg:pub.10.1007/s00261-014-0227-5
13 sg:pub.10.1007/s00261-016-0762-3
14 sg:pub.10.1007/s00330-013-2964-1
15 schema:datePublished 2018-04-24
16 schema:datePublishedReg 2018-04-24
17 schema:description The Liver Imaging Reporting and Data System (LI-RADS) standardizes the interpretation and reporting of imaging examinations in patients at risk for hepatocellular carcinoma (HCC). For focal liver observations it assigns categories (LR-1 to 5, LR-M, LR-TIV), which reflect the relative probability of benignity or malignancy of the respective observation. The categories assigned are based on major and ancillary image features, which have been developed by the American College of Radiology (ACR) and validated in many studies. This review summarizes the relevant CT and MRI features and presents an image-guided approach for readers not familiar with LI-RADS on how to use the system. The widespread adoption of LI-RADS for reporting would help reduce inter-reader variability and improve communication among radiologists, hepatologists, hepatic surgeons and oncologists, thus leading to improved patient management.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N43ef163886e14ff9be8c28a01b31c1e5
22 Ne8458238580b4c8d9bc2212b29489ece
23 sg:journal.1032121
24 schema:keywords American College
25 CT
26 College
27 Data System
28 Imaging Reporting
29 LI-RADS
30 LI-RADS v2017
31 Liver Imaging Reporting
32 MRI
33 adoption
34 ancillary image features
35 approach
36 benignity
37 carcinoma
38 categories
39 communication
40 examination
41 features
42 focal liver observations
43 hepatic surgeons
44 hepatocellular carcinoma
45 hepatologists
46 image features
47 image-guided approach
48 inter-reader variability
49 interpretation
50 liver nodules
51 liver observations
52 malignancy
53 management
54 nodules
55 observations
56 oncologists
57 patient management
58 patients
59 probability
60 radiologists
61 radiology
62 readers
63 relative probability
64 relevant CT
65 reporting
66 respective observations
67 review
68 risk
69 study
70 surgeons
71 system
72 v2017
73 variability
74 widespread adoption
75 schema:name LI-RADS v2017 for liver nodules: how we read and report
76 schema:pagination 14
77 schema:productId N16a72c68089741249bdb051ffacd2f70
78 N16b89a5b06db4cb28a6a6d55e2694cea
79 N9998a198013b41dcb96036755bc54235
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103626364
81 https://doi.org/10.1186/s40644-018-0149-5
82 schema:sdDatePublished 2022-01-01T18:50
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Nc075d757277440e2b8e73fe98c246716
85 schema:url https://doi.org/10.1186/s40644-018-0149-5
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N16a72c68089741249bdb051ffacd2f70 schema:name pubmed_id
90 schema:value 29690933
91 rdf:type schema:PropertyValue
92 N16b89a5b06db4cb28a6a6d55e2694cea schema:name dimensions_id
93 schema:value pub.1103626364
94 rdf:type schema:PropertyValue
95 N1797f36e47a64c3da10127548ccf5e50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Practice Guidelines as Topic
97 rdf:type schema:DefinedTerm
98 N243713dc18974baeb643744395df4153 rdf:first sg:person.01046263323.87
99 rdf:rest rdf:nil
100 N422f938a10f34b54a076a290fd7f02c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Tomography, X-Ray Computed
102 rdf:type schema:DefinedTerm
103 N4262c29470e54816a8c86abc1accb871 rdf:first sg:person.0643031251.50
104 rdf:rest N243713dc18974baeb643744395df4153
105 N43ef163886e14ff9be8c28a01b31c1e5 schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 N509c1b0fbb104cd098abcdf468797670 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Magnetic Resonance Imaging
109 rdf:type schema:DefinedTerm
110 N81d3a9218e1c463fb4cb58cd357cc9cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Liver Neoplasms
112 rdf:type schema:DefinedTerm
113 N9998a198013b41dcb96036755bc54235 schema:name doi
114 schema:value 10.1186/s40644-018-0149-5
115 rdf:type schema:PropertyValue
116 Nc075d757277440e2b8e73fe98c246716 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nc0a96edb1c8f4501abc8b387d1713d51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Radiographic Image Interpretation, Computer-Assisted
120 rdf:type schema:DefinedTerm
121 Ne3ca6fec58db4bc6adf75a9d1a37e244 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Carcinoma, Hepatocellular
123 rdf:type schema:DefinedTerm
124 Ne59cb400c6e542138be980c9f5522ce9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Research Design
126 rdf:type schema:DefinedTerm
127 Ne8458238580b4c8d9bc2212b29489ece schema:volumeNumber 18
128 rdf:type schema:PublicationVolume
129 Nfefd11b768b74d2f8478062fd1520c72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Humans
131 rdf:type schema:DefinedTerm
132 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
133 schema:name Medical and Health Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
136 schema:name Clinical Sciences
137 rdf:type schema:DefinedTerm
138 sg:journal.1032121 schema:issn 1470-7330
139 1740-5025
140 schema:name Cancer Imaging
141 schema:publisher Springer Nature
142 rdf:type schema:Periodical
143 sg:person.01046263323.87 schema:affiliation grid-institutes:grid.66875.3a
144 schema:familyName Heiken
145 schema:givenName Jay
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046263323.87
147 rdf:type schema:Person
148 sg:person.0643031251.50 schema:affiliation grid-institutes:None
149 schema:familyName Schima
150 schema:givenName Wolfgang
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643031251.50
152 rdf:type schema:Person
153 sg:pub.10.1007/s00261-014-0227-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017674237
154 https://doi.org/10.1007/s00261-014-0227-5
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00261-016-0762-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001369740
157 https://doi.org/10.1007/s00261-016-0762-3
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00330-013-2964-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039020783
160 https://doi.org/10.1007/s00330-013-2964-1
161 rdf:type schema:CreativeWork
162 grid-institutes:None schema:alternateName Department of Diagnostic and Interventional Radiology, Goettlicher Heiland Krankenhaus, Barmherzige Schwestern Krankenhaus, and St. Josef Krankenhaus, Vienna, Austria
163 schema:name Department of Diagnostic and Interventional Radiology, Goettlicher Heiland Krankenhaus, Barmherzige Schwestern Krankenhaus, and St. Josef Krankenhaus, Vienna, Austria
164 rdf:type schema:Organization
165 grid-institutes:grid.66875.3a schema:alternateName Mayo Clinic, Rochester, Minnesota USA
166 schema:name Mayo Clinic, Rochester, Minnesota USA
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...