Evaluation of metabolic response with 18F-FDG PET-CT in patients with advanced or recurrent thymic epithelial tumors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-07

AUTHORS

Sabrina Segreto, Rosa Fonti, Margaret Ottaviano, Sara Pellegrino, Leonardo Pace, Vincenzo Damiano, Giovannella Palmieri, Silvana Del Vecchio

ABSTRACT

BACKGROUND: Patients with advanced or recurrent thymic epithelial tumors (TETs) often need several consecutive lines of chemotherapy. The aim of this retrospective monocentric study was to test whether 18F-Fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET-CT) is able to monitor standard chemotherapy efficacy in those patients and whether metabolic response correlates with morphovolumetric response as assessed by Response Evaluation Criteria in Solid Tumor (RECIST). METHODS: We evaluated 27 consecutive patients with advanced (16 patients) or recurrent (11 patients) TETs. All patients underwent 18F-FDG PET-CT before and after at least 3 cycles of chemotherapy. Maximum standardized uptake value (SUVmax) of all detected lesions was recorded and the most 18F-FDG avid lesion in each patient was selected for determination of percentage change of SUVmax (ΔSUVmax) in pre- and post-treatment scans. Tumor response was assessed by contrast-enhanced computed tomography (CE-CT) using RECIST criteria. Receiver operating characteristic (ROC) curve analysis was performed to define the optimal threshold of ΔSUVmax discriminating responders from non-responders. RESULTS: Metabolic response expressed as ΔSUVmax was significantly correlated with morphovolumetric response (Spearman's rank correlation, r = 0.64, p = 0.001). ROC curve analysis showed that a ΔSUVmax value of -25% could discriminate responders from non-responders with a sensitivity of 88% and a specificity of 80%. Conversely, basal SUVmax values were not predictive of morphovolumetric tumor response. CONCLUSIONS: Our findings indicate that metabolic response assessed by 18F-FDG PET-CT, through evaluation of ΔSUVmax, may allow identification of responders and non-responders thus guiding adaptation of therapy in patients with advanced or recurrent TETs. More... »

PAGES

10

References to SciGraph publications

  • 2010-12-21. 18F-FDG uptake on PET helps predict outcome and response after treatment in unresectable thymic epithelial tumors in ANNALS OF NUCLEAR MEDICINE
  • 2006-05-11. Monitoring chemotherapy and radiotherapy of solid tumors in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40644-017-0112-x

    DOI

    http://dx.doi.org/10.1186/s40644-017-0112-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084253108

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28264726


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antineoplastic Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorodeoxyglucose F18", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms, Glandular and Epithelial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron Emission Tomography Computed Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "ROC Curve", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiopharmaceuticals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thymus Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, X-Ray Computed", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Treatment Outcome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, Edificio 10, 80131 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, Edificio 10, 80131 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Segreto", 
            "givenName": "Sabrina", 
            "id": "sg:person.01144127156.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144127156.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biostructures and Bioimaging, National Research Council, Via T. De Amicis 95, 80145 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5326.2", 
              "name": [
                "Institute of Biostructures and Bioimaging, National Research Council, Via T. De Amicis 95, 80145 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fonti", 
            "givenName": "Rosa", 
            "id": "sg:person.01006626766.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006626766.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rare Tumors Reference Center, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Rare Tumors Reference Center, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ottaviano", 
            "givenName": "Margaret", 
            "id": "sg:person.01204377607.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204377607.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, Edificio 10, 80131 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, Edificio 10, 80131 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pellegrino", 
            "givenName": "Sara", 
            "id": "sg:person.01045753335.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045753335.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medicine and Surgery, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno Italy", 
              "id": "http://www.grid.ac/institutes/grid.11780.3f", 
              "name": [
                "Department of Medicine and Surgery, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pace", 
            "givenName": "Leonardo", 
            "id": "sg:person.0644335512.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644335512.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rare Tumors Reference Center, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Rare Tumors Reference Center, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Damiano", 
            "givenName": "Vincenzo", 
            "id": "sg:person.01157031347.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157031347.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rare Tumors Reference Center, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Rare Tumors Reference Center, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palmieri", 
            "givenName": "Giovannella", 
            "id": "sg:person.013410566277.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013410566277.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biostructures and Bioimaging, National Research Council, Via T. De Amicis 95, 80145 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5326.2", 
              "name": [
                "Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, Edificio 10, 80131 Naples, Italy", 
                "Institute of Biostructures and Bioimaging, National Research Council, Via T. De Amicis 95, 80145 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Del Vecchio", 
            "givenName": "Silvana", 
            "id": "sg:person.01004727602.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004727602.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s12149-010-0455-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001954612", 
              "https://doi.org/10.1007/s12149-010-0455-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-006-0133-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037793914", 
              "https://doi.org/10.1007/s00259-006-0133-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03-07", 
        "datePublishedReg": "2017-03-07", 
        "description": "BACKGROUND: Patients with advanced or recurrent thymic epithelial tumors (TETs) often need several consecutive lines of chemotherapy. The aim of this retrospective monocentric study was to test whether 18F-Fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET-CT) is able to monitor standard chemotherapy efficacy in those patients and whether metabolic response correlates with morphovolumetric response as assessed by Response Evaluation Criteria in Solid Tumor (RECIST).\nMETHODS: We evaluated 27 consecutive patients with advanced (16 patients) or recurrent (11 patients) TETs. All patients underwent 18F-FDG PET-CT before and after at least 3\u00a0cycles of chemotherapy. Maximum standardized uptake value (SUVmax) of all detected lesions was recorded and the most 18F-FDG avid lesion in each patient was selected for determination of percentage change of SUVmax (\u0394SUVmax) in pre- and post-treatment scans. Tumor response was assessed by contrast-enhanced computed tomography (CE-CT) using RECIST criteria. Receiver operating characteristic (ROC) curve analysis was performed to define the optimal threshold of \u0394SUVmax discriminating responders from non-responders.\nRESULTS: Metabolic response expressed as \u0394SUVmax was significantly correlated with morphovolumetric response (Spearman's rank correlation, r\u2009=\u20090.64, p\u2009=\u20090.001). ROC curve analysis showed that a \u0394SUVmax value of -25% could discriminate responders from non-responders with a sensitivity of 88% and a specificity of 80%. Conversely, basal SUVmax values were not predictive of morphovolumetric tumor response.\nCONCLUSIONS: Our findings indicate that metabolic response assessed by 18F-FDG PET-CT, through evaluation of \u0394SUVmax, may allow identification of responders and non-responders thus guiding adaptation of therapy in patients with advanced or recurrent TETs.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40644-017-0112-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1032121", 
            "issn": [
              "1740-5025", 
              "1470-7330"
            ], 
            "name": "Cancer Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "keywords": [
          "recurrent thymic epithelial tumors", 
          "thymic epithelial tumors", 
          "FDG PET-CT", 
          "tumor response", 
          "epithelial tumors", 
          "PET-CT", 
          "metabolic response", 
          "fluorodeoxyglucose positron emission tomography-computed tomography", 
          "positron emission tomography-computed tomography", 
          "contrast-enhanced computed tomography", 
          "emission tomography-computed tomography", 
          "maximum standardized uptake value", 
          "cycles of chemotherapy", 
          "curve analysis", 
          "retrospective monocentric study", 
          "Response Evaluation Criteria", 
          "FDG-avid lesions", 
          "tomography-computed tomography", 
          "identification of responders", 
          "adaptation of therapy", 
          "post-treatment scans", 
          "standardized uptake value", 
          "ROC curve analysis", 
          "characteristic curve analysis", 
          "monocentric study", 
          "RECIST criteria", 
          "consecutive patients", 
          "avid lesions", 
          "chemotherapy efficacy", 
          "computed tomography", 
          "patients", 
          "solid tumors", 
          "uptake value", 
          "response correlates", 
          "\u0394SUV", 
          "percentage change", 
          "tumors", 
          "responders", 
          "chemotherapy", 
          "lesions", 
          "tomography", 
          "SUV", 
          "response", 
          "therapy", 
          "CT", 
          "efficacy", 
          "scans", 
          "criteria", 
          "evaluation", 
          "optimal threshold", 
          "pre", 
          "correlates", 
          "evaluation criteria", 
          "PET", 
          "aim", 
          "findings", 
          "specificity", 
          "consecutive lines", 
          "study", 
          "sensitivity", 
          "analysis", 
          "changes", 
          "values", 
          "threshold", 
          "identification", 
          "lines", 
          "sub", 
          "receiver", 
          "adaptation", 
          "cycle", 
          "determination", 
          "standard chemotherapy efficacy", 
          "metabolic response correlates", 
          "morphovolumetric response", 
          "recurrent (11 patients) TETs", 
          "value of -25", 
          "basal SUV", 
          "morphovolumetric tumor response", 
          "evaluation of \u0394SUV"
        ], 
        "name": "Evaluation of metabolic response with 18F-FDG PET-CT in patients with advanced or recurrent thymic epithelial tumors", 
        "pagination": "10", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084253108"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40644-017-0112-x"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28264726"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40644-017-0112-x", 
          "https://app.dimensions.ai/details/publication/pub.1084253108"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_744.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40644-017-0112-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40644-017-0112-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40644-017-0112-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40644-017-0112-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40644-017-0112-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    275 TRIPLES      22 PREDICATES      124 URIs      114 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40644-017-0112-x schema:about N127a408a386f4f52b8d3bcb4caeb8a85
    2 N199706fcd0304bddb6f4c467095f3d84
    3 N28368d9b32cc4fb49c3f0c88dd2301d8
    4 N45084ac932f548289d0a59258670cb42
    5 N649b1059d35a485ca33da16e2789de9d
    6 N653b8038697a4abd8e1b9988227532fb
    7 N7c0b605fb97b4fa8a8dad0ad22ac09a5
    8 N8bdfdfd4669a4aa5a116f8851e39c279
    9 N930499f55bfe460b97699c4b6a3aaf9e
    10 N98558e617cc94dc38f8826810ee79433
    11 N9d526d93310c4df6b9e732cdee997261
    12 Na8579aedb36442479fb32e340dfe765e
    13 Nb024ca064833428da3764ad94a41f4ae
    14 Nc10af780f696491bb78f1550c881aacf
    15 Nd9a87c36602c49ae8641183f21014cb2
    16 Ne8dfb23d53be4417b9120a0ec6c1aa8d
    17 Ned1c7cb7fea64785a011b6d848291918
    18 anzsrc-for:11
    19 anzsrc-for:1103
    20 schema:author Nc3a8f804a93445949d275791a1dc5c78
    21 schema:citation sg:pub.10.1007/s00259-006-0133-3
    22 sg:pub.10.1007/s12149-010-0455-x
    23 schema:datePublished 2017-03-07
    24 schema:datePublishedReg 2017-03-07
    25 schema:description BACKGROUND: Patients with advanced or recurrent thymic epithelial tumors (TETs) often need several consecutive lines of chemotherapy. The aim of this retrospective monocentric study was to test whether <sup>18</sup>F-Fluorodeoxyglucose positron emission tomography-computed tomography (<sup>18</sup>F-FDG PET-CT) is able to monitor standard chemotherapy efficacy in those patients and whether metabolic response correlates with morphovolumetric response as assessed by Response Evaluation Criteria in Solid Tumor (RECIST). METHODS: We evaluated 27 consecutive patients with advanced (16 patients) or recurrent (11 patients) TETs. All patients underwent <sup>18</sup>F-FDG PET-CT before and after at least 3 cycles of chemotherapy. Maximum standardized uptake value (SUV<sub>max</sub>) of all detected lesions was recorded and the most <sup>18</sup>F-FDG avid lesion in each patient was selected for determination of percentage change of SUV<sub>max</sub> (ΔSUV<sub>max</sub>) in pre- and post-treatment scans. Tumor response was assessed by contrast-enhanced computed tomography (CE-CT) using RECIST criteria. Receiver operating characteristic (ROC) curve analysis was performed to define the optimal threshold of ΔSUV<sub>max</sub> discriminating responders from non-responders. RESULTS: Metabolic response expressed as ΔSUV<sub>max</sub> was significantly correlated with morphovolumetric response (Spearman's rank correlation, r = 0.64, p = 0.001). ROC curve analysis showed that a ΔSUV<sub>max</sub> value of -25% could discriminate responders from non-responders with a sensitivity of 88% and a specificity of 80%. Conversely, basal SUV<sub>max</sub> values were not predictive of morphovolumetric tumor response. CONCLUSIONS: Our findings indicate that metabolic response assessed by <sup>18</sup>F-FDG PET-CT, through evaluation of ΔSUV<sub>max</sub>, may allow identification of responders and non-responders thus guiding adaptation of therapy in patients with advanced or recurrent TETs.
    26 schema:genre article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N6e269250832844628f3b76bd2da8b720
    30 Ncbb97c5116c94e9394043275d272629b
    31 sg:journal.1032121
    32 schema:keywords CT
    33 FDG PET-CT
    34 FDG-avid lesions
    35 PET
    36 PET-CT
    37 RECIST criteria
    38 ROC curve analysis
    39 Response Evaluation Criteria
    40 SUV
    41 adaptation
    42 adaptation of therapy
    43 aim
    44 analysis
    45 avid lesions
    46 basal SUV
    47 changes
    48 characteristic curve analysis
    49 chemotherapy
    50 chemotherapy efficacy
    51 computed tomography
    52 consecutive lines
    53 consecutive patients
    54 contrast-enhanced computed tomography
    55 correlates
    56 criteria
    57 curve analysis
    58 cycle
    59 cycles of chemotherapy
    60 determination
    61 efficacy
    62 emission tomography-computed tomography
    63 epithelial tumors
    64 evaluation
    65 evaluation criteria
    66 evaluation of ΔSUV
    67 findings
    68 fluorodeoxyglucose positron emission tomography-computed tomography
    69 identification
    70 identification of responders
    71 lesions
    72 lines
    73 maximum standardized uptake value
    74 metabolic response
    75 metabolic response correlates
    76 monocentric study
    77 morphovolumetric response
    78 morphovolumetric tumor response
    79 optimal threshold
    80 patients
    81 percentage change
    82 positron emission tomography-computed tomography
    83 post-treatment scans
    84 pre
    85 receiver
    86 recurrent (11 patients) TETs
    87 recurrent thymic epithelial tumors
    88 responders
    89 response
    90 response correlates
    91 retrospective monocentric study
    92 scans
    93 sensitivity
    94 solid tumors
    95 specificity
    96 standard chemotherapy efficacy
    97 standardized uptake value
    98 study
    99 sub
    100 therapy
    101 threshold
    102 thymic epithelial tumors
    103 tomography
    104 tomography-computed tomography
    105 tumor response
    106 tumors
    107 uptake value
    108 value of -25
    109 values
    110 ΔSUV
    111 schema:name Evaluation of metabolic response with 18F-FDG PET-CT in patients with advanced or recurrent thymic epithelial tumors
    112 schema:pagination 10
    113 schema:productId N63b244ae19a34008b05c8fa1961063ca
    114 N8b16cdcd4b97416298a4077963dd8489
    115 Nd8c11688677043bbb23db1f81ea63b9c
    116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084253108
    117 https://doi.org/10.1186/s40644-017-0112-x
    118 schema:sdDatePublished 2021-12-01T19:40
    119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    120 schema:sdPublisher N4d1f3378948a43be8ee7123a9c2b3fd8
    121 schema:url https://doi.org/10.1186/s40644-017-0112-x
    122 sgo:license sg:explorer/license/
    123 sgo:sdDataset articles
    124 rdf:type schema:ScholarlyArticle
    125 N127a408a386f4f52b8d3bcb4caeb8a85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Humans
    127 rdf:type schema:DefinedTerm
    128 N199706fcd0304bddb6f4c467095f3d84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Treatment Outcome
    130 rdf:type schema:DefinedTerm
    131 N28368d9b32cc4fb49c3f0c88dd2301d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Aged, 80 and over
    133 rdf:type schema:DefinedTerm
    134 N40c92067aa3a485fb57679c939a83836 rdf:first sg:person.01006626766.50
    135 rdf:rest N561c98ed6fdd49f09688dbf9432034e6
    136 N45084ac932f548289d0a59258670cb42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name ROC Curve
    138 rdf:type schema:DefinedTerm
    139 N4d1f3378948a43be8ee7123a9c2b3fd8 schema:name Springer Nature - SN SciGraph project
    140 rdf:type schema:Organization
    141 N4fb5c4e9aff84c538bece157db4ec7c1 rdf:first sg:person.01157031347.51
    142 rdf:rest Nc5c1957ab2bf45448d45809c69b687f0
    143 N561c98ed6fdd49f09688dbf9432034e6 rdf:first sg:person.01204377607.61
    144 rdf:rest N946cf2e4d871433fb7f831dd38c9d6b0
    145 N5c93dbc4436f4e8abbe2df6e0237948d rdf:first sg:person.01004727602.40
    146 rdf:rest rdf:nil
    147 N631b219aae654a35a8ca513c409733ee rdf:first sg:person.0644335512.16
    148 rdf:rest N4fb5c4e9aff84c538bece157db4ec7c1
    149 N63b244ae19a34008b05c8fa1961063ca schema:name doi
    150 schema:value 10.1186/s40644-017-0112-x
    151 rdf:type schema:PropertyValue
    152 N649b1059d35a485ca33da16e2789de9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Middle Aged
    154 rdf:type schema:DefinedTerm
    155 N653b8038697a4abd8e1b9988227532fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Radiopharmaceuticals
    157 rdf:type schema:DefinedTerm
    158 N6e269250832844628f3b76bd2da8b720 schema:volumeNumber 17
    159 rdf:type schema:PublicationVolume
    160 N7c0b605fb97b4fa8a8dad0ad22ac09a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Retrospective Studies
    162 rdf:type schema:DefinedTerm
    163 N8b16cdcd4b97416298a4077963dd8489 schema:name dimensions_id
    164 schema:value pub.1084253108
    165 rdf:type schema:PropertyValue
    166 N8bdfdfd4669a4aa5a116f8851e39c279 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Fluorodeoxyglucose F18
    168 rdf:type schema:DefinedTerm
    169 N930499f55bfe460b97699c4b6a3aaf9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Tomography, X-Ray Computed
    171 rdf:type schema:DefinedTerm
    172 N946cf2e4d871433fb7f831dd38c9d6b0 rdf:first sg:person.01045753335.39
    173 rdf:rest N631b219aae654a35a8ca513c409733ee
    174 N98558e617cc94dc38f8826810ee79433 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Neoplasms, Glandular and Epithelial
    176 rdf:type schema:DefinedTerm
    177 N9d526d93310c4df6b9e732cdee997261 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Female
    179 rdf:type schema:DefinedTerm
    180 Na8579aedb36442479fb32e340dfe765e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Adult
    182 rdf:type schema:DefinedTerm
    183 Nb024ca064833428da3764ad94a41f4ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Aged
    185 rdf:type schema:DefinedTerm
    186 Nc10af780f696491bb78f1550c881aacf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Thymus Neoplasms
    188 rdf:type schema:DefinedTerm
    189 Nc3a8f804a93445949d275791a1dc5c78 rdf:first sg:person.01144127156.46
    190 rdf:rest N40c92067aa3a485fb57679c939a83836
    191 Nc5c1957ab2bf45448d45809c69b687f0 rdf:first sg:person.013410566277.16
    192 rdf:rest N5c93dbc4436f4e8abbe2df6e0237948d
    193 Ncbb97c5116c94e9394043275d272629b schema:issueNumber 1
    194 rdf:type schema:PublicationIssue
    195 Nd8c11688677043bbb23db1f81ea63b9c schema:name pubmed_id
    196 schema:value 28264726
    197 rdf:type schema:PropertyValue
    198 Nd9a87c36602c49ae8641183f21014cb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Antineoplastic Agents
    200 rdf:type schema:DefinedTerm
    201 Ne8dfb23d53be4417b9120a0ec6c1aa8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Positron Emission Tomography Computed Tomography
    203 rdf:type schema:DefinedTerm
    204 Ned1c7cb7fea64785a011b6d848291918 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Male
    206 rdf:type schema:DefinedTerm
    207 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    208 schema:name Medical and Health Sciences
    209 rdf:type schema:DefinedTerm
    210 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    211 schema:name Clinical Sciences
    212 rdf:type schema:DefinedTerm
    213 sg:journal.1032121 schema:issn 1470-7330
    214 1740-5025
    215 schema:name Cancer Imaging
    216 schema:publisher Springer Nature
    217 rdf:type schema:Periodical
    218 sg:person.01004727602.40 schema:affiliation grid-institutes:grid.5326.2
    219 schema:familyName Del Vecchio
    220 schema:givenName Silvana
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004727602.40
    222 rdf:type schema:Person
    223 sg:person.01006626766.50 schema:affiliation grid-institutes:grid.5326.2
    224 schema:familyName Fonti
    225 schema:givenName Rosa
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006626766.50
    227 rdf:type schema:Person
    228 sg:person.01045753335.39 schema:affiliation grid-institutes:grid.4691.a
    229 schema:familyName Pellegrino
    230 schema:givenName Sara
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045753335.39
    232 rdf:type schema:Person
    233 sg:person.01144127156.46 schema:affiliation grid-institutes:grid.4691.a
    234 schema:familyName Segreto
    235 schema:givenName Sabrina
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144127156.46
    237 rdf:type schema:Person
    238 sg:person.01157031347.51 schema:affiliation grid-institutes:grid.4691.a
    239 schema:familyName Damiano
    240 schema:givenName Vincenzo
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157031347.51
    242 rdf:type schema:Person
    243 sg:person.01204377607.61 schema:affiliation grid-institutes:grid.4691.a
    244 schema:familyName Ottaviano
    245 schema:givenName Margaret
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204377607.61
    247 rdf:type schema:Person
    248 sg:person.013410566277.16 schema:affiliation grid-institutes:grid.4691.a
    249 schema:familyName Palmieri
    250 schema:givenName Giovannella
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013410566277.16
    252 rdf:type schema:Person
    253 sg:person.0644335512.16 schema:affiliation grid-institutes:grid.11780.3f
    254 schema:familyName Pace
    255 schema:givenName Leonardo
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644335512.16
    257 rdf:type schema:Person
    258 sg:pub.10.1007/s00259-006-0133-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037793914
    259 https://doi.org/10.1007/s00259-006-0133-3
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/s12149-010-0455-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001954612
    262 https://doi.org/10.1007/s12149-010-0455-x
    263 rdf:type schema:CreativeWork
    264 grid-institutes:grid.11780.3f schema:alternateName Department of Medicine and Surgery, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno Italy
    265 schema:name Department of Medicine and Surgery, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno Italy
    266 rdf:type schema:Organization
    267 grid-institutes:grid.4691.a schema:alternateName Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, Edificio 10, 80131 Naples, Italy
    268 Rare Tumors Reference Center, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
    269 schema:name Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, Edificio 10, 80131 Naples, Italy
    270 Rare Tumors Reference Center, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
    271 rdf:type schema:Organization
    272 grid-institutes:grid.5326.2 schema:alternateName Institute of Biostructures and Bioimaging, National Research Council, Via T. De Amicis 95, 80145 Naples, Italy
    273 schema:name Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, Edificio 10, 80131 Naples, Italy
    274 Institute of Biostructures and Bioimaging, National Research Council, Via T. De Amicis 95, 80145 Naples, Italy
    275 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...