STatistically Assigned Response Criteria in Solid Tumors (STARCIST) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Thomas Bengtsson, Sandra M. Sanabria-Bohorquez, Timothy J. McCarthy, David S. Binns, Rodney J. Hicks, Alex J. de Crespigny

ABSTRACT

BACKGROUND: Several reproducibility studies have established good test-retest reliability of FDG-PET in various oncology settings. However, these studies are based on relatively short inter-scan periods of 1-3 days while, in contrast, response assessments based on FDG-PET in early phase drug trials are typically made over an interval of 2-3 weeks during the first treatment cycle. With focus on longer, on-treatment scan intervals, we develop a data-driven approach to calculate baseline-specific cutoff values to determine patient-level changes in glucose uptake that are unlikely to be explained by random variability. Our method takes into account the statistical nature of natural fluctuations in SUV as well as potential bias effects. METHODS: To assess variability in SUV over clinically relevant scan intervals for clinical trials, we analyzed baseline and follow-up FDG-PET scans with a median scan interval of 21 days from 53 advanced stage cancer patients enrolled in a Phase 1 trial. The 53 patients received a sub-pharmacologic drug dose and the trial data is treated as a 'test-retest' data set. A simulation-based tool is presented which takes as input baseline lesion SUVmax values, the variance of spurious changes in SUVmax between scans, the desired Type I error rate, and outputs lesion and patient based cut-off values. Bias corrections are included to account for variations in tracer uptake time. RESULTS: In the training data, changes in SUVmax follow an approximately zero-mean Gaussian distribution with constant variance across levels of the baseline measurements. Because of constant variance, the coefficient of variation is a decreasing function of the magnitude of baseline SUVmax. This finding is consistent with published results, but our data shows greater variability. Application of our method to NSCLC patients treated with erlotinib produces results distinct from those based on the EORTC criteria. Based on data presented here as well as previous repeatability studies, the proposed method has greater statistical power to detect a significant %-decrease on SUVmax compared to published criteria relying on symmetric thresholds. CONCLUSIONS: Defining patient-specific, baseline dependent cut-off values based on the (null) distribution of naturally occurring fluctuations in glucose uptake enable identification of statistically significant changes in SUVmax. For lower baseline values, the produced cutoff values are notably asymmetric with relatively large changes (e.g. >50 %) required for statistical significance. For use with prospectively defined endpoints, the developed method enables the use of one-armed trials to detect pharmacodynamic drug effects based on FDG-PET. The clinical importance of changes in SUVmax is likely to remain dependent on both tumor biology and the type of treatment. More... »

PAGES

9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40644-015-0042-4

DOI

http://dx.doi.org/10.1186/s40644-015-0042-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021131930

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26231380


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Pharmacological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Non-Small-Cell Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Normal Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Roche (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418158.1", 
          "name": [
            "Biostatistics, Genentech Inc, 1 DNA Way, 94080, South San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bengtsson", 
        "givenName": "Thomas", 
        "id": "sg:person.01311052057.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311052057.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Roche (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418158.1", 
          "name": [
            "Clinical Imaging, Genentech Inc, South San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanabria-Bohorquez", 
        "givenName": "Sandra M.", 
        "id": "sg:person.0775417211.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775417211.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Clinical Imaging, Pfizer Global R&D, Groton, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCarthy", 
        "givenName": "Timothy J.", 
        "id": "sg:person.01137552704.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137552704.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Melbourne", 
          "id": "https://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "The Sir Peter MacCallum Department of Oncology, the University of Melbourne, Parkville, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Binns", 
        "givenName": "David S.", 
        "id": "sg:person.01213140513.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213140513.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peter MacCallum Cancer Centre", 
          "id": "https://www.grid.ac/institutes/grid.1055.1", 
          "name": [
            "The Sir Peter MacCallum Department of Oncology, the University of Melbourne, Parkville, VIC, Australia", 
            "Cancer Imaging, the Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hicks", 
        "givenName": "Rodney J.", 
        "id": "sg:person.01121233254.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121233254.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Roche (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418158.1", 
          "name": [
            "Clinical Imaging, Genentech Inc, South San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Crespigny", 
        "givenName": "Alex J.", 
        "id": "sg:person.011427770304.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011427770304.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2967/jnumed.109.063347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005078707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2191-219x-2-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006831309", 
          "https://doi.org/10.1186/2191-219x-2-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1102/1470-7330.2010.9088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006962526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.057182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007544443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.057307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009233958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10428190903040048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015304457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-009-1297-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021250910", 
          "https://doi.org/10.1007/s00259-009-1297-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-009-1297-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021250910", 
          "https://doi.org/10.1007/s00259-009-1297-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-009-1297-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021250910", 
          "https://doi.org/10.1007/s00259-009-1297-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.095299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024179189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2012.47.4189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030332889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.054239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030685513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6604330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031788073", 
          "https://doi.org/10.1038/sj.bjc.6604330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2191-219x-2-35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048800535", 
          "https://doi.org/10.1186/2191-219x-2-35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(99)00229-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049505783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074551522", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075171666", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075310656", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.196.1.7784562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082505950"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: Several reproducibility studies have established good test-retest reliability of FDG-PET in various oncology settings. However, these studies are based on relatively short inter-scan periods of 1-3\u00a0days while, in contrast, response assessments based on FDG-PET in early phase drug trials are typically made over an interval of 2-3\u00a0weeks during the first treatment cycle. With focus on longer, on-treatment scan intervals, we develop a data-driven approach to calculate baseline-specific cutoff values to determine patient-level changes in glucose uptake that are unlikely to be explained by random variability. Our method takes into account the statistical nature of natural fluctuations in SUV as well as potential bias effects.\nMETHODS: To assess variability in SUV over clinically relevant scan intervals for clinical trials, we analyzed baseline and follow-up FDG-PET scans with a median scan interval of 21\u00a0days from 53 advanced stage cancer patients enrolled in a Phase 1 trial. The 53 patients received a sub-pharmacologic drug dose and the trial data is treated as a 'test-retest' data set. A simulation-based tool is presented which takes as input baseline lesion SUVmax values, the variance of spurious changes in SUVmax between scans, the desired Type I error rate, and outputs lesion and patient based cut-off values. Bias corrections are included to account for variations in tracer uptake time.\nRESULTS: In the training data, changes in SUVmax follow an approximately zero-mean Gaussian distribution with constant variance across levels of the baseline measurements. Because of constant variance, the coefficient of variation is a decreasing function of the magnitude of baseline SUVmax. This finding is consistent with published results, but our data shows greater variability. Application of our method to NSCLC patients treated with erlotinib produces results distinct from those based on the EORTC criteria. Based on data presented here as well as previous repeatability studies, the proposed method has greater statistical power to detect a significant %-decrease on SUVmax compared to published criteria relying on symmetric thresholds.\nCONCLUSIONS: Defining patient-specific, baseline dependent cut-off values based on the (null) distribution of naturally occurring fluctuations in glucose uptake enable identification of statistically significant changes in SUVmax. For lower baseline values, the produced cutoff values are notably asymmetric with relatively large changes (e.g. >50\u00a0%) required for statistical significance. For use with prospectively defined endpoints, the developed method enables the use of one-armed trials to detect pharmacodynamic drug effects based on FDG-PET. The clinical importance of changes in SUVmax is likely to remain dependent on both tumor biology and the type of treatment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40644-015-0042-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032121", 
        "issn": [
          "1740-5025", 
          "1470-7330"
        ], 
        "name": "Cancer Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "STatistically Assigned Response Criteria in Solid Tumors (STARCIST)", 
    "pagination": "9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "64aedd001605593a8fac71da4213af46f99f924c4e9cb6e72e43415298884b98"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26231380"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101172931"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40644-015-0042-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021131930"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40644-015-0042-4", 
      "https://app.dimensions.ai/details/publication/pub.1021131930"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88221_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs40644-015-0042-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40644-015-0042-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40644-015-0042-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40644-015-0042-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40644-015-0042-4'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      60 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40644-015-0042-4 schema:about N0a8ef278d53c43d2a89eb2d0f79dfe33
2 N119d20ad0627482ba55f764c8eb70289
3 N16f7d03af34640f08b9334f395164f17
4 N1b17535ba02846e59a5a4dbd8e7058e8
5 N2f35b5585ff043bb8909e67bc7ec6503
6 N44c1ba19fdcb491aa936841c04ac1867
7 N5943130fbd1b41e1aca8c7764f49e38f
8 N5afca2381753447da98f966c0a43ad41
9 Na64385af9be54d909a451f9693d320c4
10 Na992edeeffd24af190209c5a32d1fa88
11 Nb63545d6c7da40be9654bc5cf76ac0c7
12 Nbec9b25af9594c2ba9eb88d3fd8b3629
13 Nc03f1f0f551e405eb31ead841858112d
14 Nc6fd2cf5053546f78ab6fc429cd170f5
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author N3aebbdd0dd1f43c5a9478158a5b56efd
18 schema:citation sg:pub.10.1007/s00259-009-1297-4
19 sg:pub.10.1038/sj.bjc.6604330
20 sg:pub.10.1186/2191-219x-2-35
21 sg:pub.10.1186/2191-219x-2-6
22 https://app.dimensions.ai/details/publication/pub.1074551522
23 https://app.dimensions.ai/details/publication/pub.1075171666
24 https://app.dimensions.ai/details/publication/pub.1075310656
25 https://doi.org/10.1016/s0959-8049(99)00229-4
26 https://doi.org/10.1080/10428190903040048
27 https://doi.org/10.1102/1470-7330.2010.9088
28 https://doi.org/10.1148/radiology.196.1.7784562
29 https://doi.org/10.1200/jco.2012.47.4189
30 https://doi.org/10.2967/jnumed.108.054239
31 https://doi.org/10.2967/jnumed.108.057182
32 https://doi.org/10.2967/jnumed.108.057307
33 https://doi.org/10.2967/jnumed.109.063347
34 https://doi.org/10.2967/jnumed.111.095299
35 schema:datePublished 2015-12
36 schema:datePublishedReg 2015-12-01
37 schema:description BACKGROUND: Several reproducibility studies have established good test-retest reliability of FDG-PET in various oncology settings. However, these studies are based on relatively short inter-scan periods of 1-3 days while, in contrast, response assessments based on FDG-PET in early phase drug trials are typically made over an interval of 2-3 weeks during the first treatment cycle. With focus on longer, on-treatment scan intervals, we develop a data-driven approach to calculate baseline-specific cutoff values to determine patient-level changes in glucose uptake that are unlikely to be explained by random variability. Our method takes into account the statistical nature of natural fluctuations in SUV as well as potential bias effects. METHODS: To assess variability in SUV over clinically relevant scan intervals for clinical trials, we analyzed baseline and follow-up FDG-PET scans with a median scan interval of 21 days from 53 advanced stage cancer patients enrolled in a Phase 1 trial. The 53 patients received a sub-pharmacologic drug dose and the trial data is treated as a 'test-retest' data set. A simulation-based tool is presented which takes as input baseline lesion SUVmax values, the variance of spurious changes in SUVmax between scans, the desired Type I error rate, and outputs lesion and patient based cut-off values. Bias corrections are included to account for variations in tracer uptake time. RESULTS: In the training data, changes in SUVmax follow an approximately zero-mean Gaussian distribution with constant variance across levels of the baseline measurements. Because of constant variance, the coefficient of variation is a decreasing function of the magnitude of baseline SUVmax. This finding is consistent with published results, but our data shows greater variability. Application of our method to NSCLC patients treated with erlotinib produces results distinct from those based on the EORTC criteria. Based on data presented here as well as previous repeatability studies, the proposed method has greater statistical power to detect a significant %-decrease on SUVmax compared to published criteria relying on symmetric thresholds. CONCLUSIONS: Defining patient-specific, baseline dependent cut-off values based on the (null) distribution of naturally occurring fluctuations in glucose uptake enable identification of statistically significant changes in SUVmax. For lower baseline values, the produced cutoff values are notably asymmetric with relatively large changes (e.g. >50 %) required for statistical significance. For use with prospectively defined endpoints, the developed method enables the use of one-armed trials to detect pharmacodynamic drug effects based on FDG-PET. The clinical importance of changes in SUVmax is likely to remain dependent on both tumor biology and the type of treatment.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N7722c838ffe24450be8c948d5e15ab06
42 N96524bb0ef1545fb8670a80676cc9a85
43 sg:journal.1032121
44 schema:name STatistically Assigned Response Criteria in Solid Tumors (STARCIST)
45 schema:pagination 9
46 schema:productId N145a638b444b4c608607eafb820b372e
47 Nabd1fd17e268438eb478572ac96b2baf
48 Nb1066dae11934429bcb75f2c8ef61371
49 Nc19b6968d14e4ec6b0849315197dd1ea
50 Ne8401cc7640941378a86ff17b8fcf0df
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021131930
52 https://doi.org/10.1186/s40644-015-0042-4
53 schema:sdDatePublished 2019-04-11T13:07
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N9b672fc7db0a4f8cbb3e0120d6bbe65c
56 schema:url http://link.springer.com/10.1186%2Fs40644-015-0042-4
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0a8ef278d53c43d2a89eb2d0f79dfe33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Neoplasms
62 rdf:type schema:DefinedTerm
63 N119d20ad0627482ba55f764c8eb70289 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Carcinoma, Non-Small-Cell Lung
65 rdf:type schema:DefinedTerm
66 N145a638b444b4c608607eafb820b372e schema:name readcube_id
67 schema:value 64aedd001605593a8fac71da4213af46f99f924c4e9cb6e72e43415298884b98
68 rdf:type schema:PropertyValue
69 N16f7d03af34640f08b9334f395164f17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Normal Distribution
71 rdf:type schema:DefinedTerm
72 N1b17535ba02846e59a5a4dbd8e7058e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Biomarkers, Pharmacological
74 rdf:type schema:DefinedTerm
75 N2f35b5585ff043bb8909e67bc7ec6503 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Predictive Value of Tests
77 rdf:type schema:DefinedTerm
78 N3aebbdd0dd1f43c5a9478158a5b56efd rdf:first sg:person.01311052057.48
79 rdf:rest N7896a14e8fe041c4bf305cab801083f5
80 N44c1ba19fdcb491aa936841c04ac1867 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Lung Neoplasms
82 rdf:type schema:DefinedTerm
83 N5943130fbd1b41e1aca8c7764f49e38f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Positron-Emission Tomography
85 rdf:type schema:DefinedTerm
86 N595fc5fe675b47bbbf8a95d7eb202240 rdf:first sg:person.01137552704.24
87 rdf:rest Nd05f062fbeab4e92ac4c4e12094db2f6
88 N5afca2381753447da98f966c0a43ad41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Tomography, X-Ray Computed
90 rdf:type schema:DefinedTerm
91 N7722c838ffe24450be8c948d5e15ab06 schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 N7896a14e8fe041c4bf305cab801083f5 rdf:first sg:person.0775417211.95
94 rdf:rest N595fc5fe675b47bbbf8a95d7eb202240
95 N96524bb0ef1545fb8670a80676cc9a85 schema:volumeNumber 15
96 rdf:type schema:PublicationVolume
97 N9b672fc7db0a4f8cbb3e0120d6bbe65c schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Na64385af9be54d909a451f9693d320c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Radiopharmaceuticals
101 rdf:type schema:DefinedTerm
102 Na992edeeffd24af190209c5a32d1fa88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Fluorodeoxyglucose F18
104 rdf:type schema:DefinedTerm
105 Nabd1fd17e268438eb478572ac96b2baf schema:name doi
106 schema:value 10.1186/s40644-015-0042-4
107 rdf:type schema:PropertyValue
108 Nb1066dae11934429bcb75f2c8ef61371 schema:name dimensions_id
109 schema:value pub.1021131930
110 rdf:type schema:PropertyValue
111 Nb63545d6c7da40be9654bc5cf76ac0c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Glucose
113 rdf:type schema:DefinedTerm
114 Nbec9b25af9594c2ba9eb88d3fd8b3629 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Humans
116 rdf:type schema:DefinedTerm
117 Nc03f1f0f551e405eb31ead841858112d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Treatment Outcome
119 rdf:type schema:DefinedTerm
120 Nc19b6968d14e4ec6b0849315197dd1ea schema:name nlm_unique_id
121 schema:value 101172931
122 rdf:type schema:PropertyValue
123 Nc6fd2cf5053546f78ab6fc429cd170f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Algorithms
125 rdf:type schema:DefinedTerm
126 Nd05f062fbeab4e92ac4c4e12094db2f6 rdf:first sg:person.01213140513.69
127 rdf:rest Nde86bbf4657d43be862cf805b86aeacb
128 Nde86bbf4657d43be862cf805b86aeacb rdf:first sg:person.01121233254.97
129 rdf:rest Nfaaa35ae0fc64ce1bce62fcc57b4013e
130 Ne8401cc7640941378a86ff17b8fcf0df schema:name pubmed_id
131 schema:value 26231380
132 rdf:type schema:PropertyValue
133 Nfaaa35ae0fc64ce1bce62fcc57b4013e rdf:first sg:person.011427770304.21
134 rdf:rest rdf:nil
135 Nfb2386c0ad6f44d980d360109eb826a3 schema:name Clinical Imaging, Pfizer Global R&D, Groton, CT, USA
136 rdf:type schema:Organization
137 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
138 schema:name Medical and Health Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
141 schema:name Clinical Sciences
142 rdf:type schema:DefinedTerm
143 sg:journal.1032121 schema:issn 1470-7330
144 1740-5025
145 schema:name Cancer Imaging
146 rdf:type schema:Periodical
147 sg:person.01121233254.97 schema:affiliation https://www.grid.ac/institutes/grid.1055.1
148 schema:familyName Hicks
149 schema:givenName Rodney J.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121233254.97
151 rdf:type schema:Person
152 sg:person.01137552704.24 schema:affiliation Nfb2386c0ad6f44d980d360109eb826a3
153 schema:familyName McCarthy
154 schema:givenName Timothy J.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137552704.24
156 rdf:type schema:Person
157 sg:person.011427770304.21 schema:affiliation https://www.grid.ac/institutes/grid.418158.1
158 schema:familyName de Crespigny
159 schema:givenName Alex J.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011427770304.21
161 rdf:type schema:Person
162 sg:person.01213140513.69 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
163 schema:familyName Binns
164 schema:givenName David S.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213140513.69
166 rdf:type schema:Person
167 sg:person.01311052057.48 schema:affiliation https://www.grid.ac/institutes/grid.418158.1
168 schema:familyName Bengtsson
169 schema:givenName Thomas
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311052057.48
171 rdf:type schema:Person
172 sg:person.0775417211.95 schema:affiliation https://www.grid.ac/institutes/grid.418158.1
173 schema:familyName Sanabria-Bohorquez
174 schema:givenName Sandra M.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775417211.95
176 rdf:type schema:Person
177 sg:pub.10.1007/s00259-009-1297-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021250910
178 https://doi.org/10.1007/s00259-009-1297-4
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/sj.bjc.6604330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031788073
181 https://doi.org/10.1038/sj.bjc.6604330
182 rdf:type schema:CreativeWork
183 sg:pub.10.1186/2191-219x-2-35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048800535
184 https://doi.org/10.1186/2191-219x-2-35
185 rdf:type schema:CreativeWork
186 sg:pub.10.1186/2191-219x-2-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006831309
187 https://doi.org/10.1186/2191-219x-2-6
188 rdf:type schema:CreativeWork
189 https://app.dimensions.ai/details/publication/pub.1074551522 schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1075171666 schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1075310656 schema:CreativeWork
192 https://doi.org/10.1016/s0959-8049(99)00229-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049505783
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1080/10428190903040048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015304457
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1102/1470-7330.2010.9088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006962526
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1148/radiology.196.1.7784562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082505950
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1200/jco.2012.47.4189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030332889
201 rdf:type schema:CreativeWork
202 https://doi.org/10.2967/jnumed.108.054239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030685513
203 rdf:type schema:CreativeWork
204 https://doi.org/10.2967/jnumed.108.057182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007544443
205 rdf:type schema:CreativeWork
206 https://doi.org/10.2967/jnumed.108.057307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009233958
207 rdf:type schema:CreativeWork
208 https://doi.org/10.2967/jnumed.109.063347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005078707
209 rdf:type schema:CreativeWork
210 https://doi.org/10.2967/jnumed.111.095299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024179189
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.1008.9 schema:alternateName University of Melbourne
213 schema:name The Sir Peter MacCallum Department of Oncology, the University of Melbourne, Parkville, VIC, Australia
214 rdf:type schema:Organization
215 https://www.grid.ac/institutes/grid.1055.1 schema:alternateName Peter MacCallum Cancer Centre
216 schema:name Cancer Imaging, the Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
217 The Sir Peter MacCallum Department of Oncology, the University of Melbourne, Parkville, VIC, Australia
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.418158.1 schema:alternateName Roche (United States)
220 schema:name Biostatistics, Genentech Inc, 1 DNA Way, 94080, South San Francisco, CA, USA
221 Clinical Imaging, Genentech Inc, South San Francisco, CA, USA
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...