Hybrid control combined with a voluntary biosignal to control a prosthetic hand View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Saeed Bahrami Moqadam, Seyed Mohammad Elahi, An Mo, WenZeng Zhang

ABSTRACT

In this research, the combination of fuzzy/PD and EMG signals, as direct command control, is proposed. Although fuzzy/PD strategy was used to control force position of the artificial hand, the combination of that with EMG signaling to voluntary direct command control is a novel method. In this paper, the EMG signal and its role in effective communication between a DC motor with a voltage trigger and neurofeedback are initially explained. Moreover, by introducing a filtration method, EMG pulses are obtained as stepping pulses with a signal-specific height of a voltage between 0 and 6 V, according to EMG domain voltage, with a time interval adapted from the EMG stimulus pulses. Two data points from each channel of EMG were extracted. The domain of the voltage of the EMG signal is impacted on the output of the fuzzy logic unit, and also the time amount between each stimulus of the EMG signal is the input of the PD controller. By this method, a user can influence grip position and grasping force of his/her prosthesis. More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40638-018-0087-5

DOI

http://dx.doi.org/10.1186/s40638-018-0087-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107091332

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30294521


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Mechanical Engineering, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bahrami Moqadam", 
        "givenName": "Saeed", 
        "id": "sg:person.011546754770.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011546754770.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shahid Beheshti University of Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.411600.2", 
          "name": [
            "Department of Nuclear Science Engineering, Shahid Beheshti University, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elahi", 
        "givenName": "Seyed Mohammad", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Mechanical Engineering, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mo", 
        "givenName": "An", 
        "id": "sg:person.014333471003.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014333471003.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Mechanical Engineering, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "WenZeng", 
        "id": "sg:person.011230065707.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011230065707.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1155/2012/105074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004842583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1019901736", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-0449-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019901736", 
          "https://doi.org/10.1007/978-1-4471-0449-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-0449-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019901736", 
          "https://doi.org/10.1007/978-1-4471-0449-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2009.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027667476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18812-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042204027", 
          "https://doi.org/10.1007/978-3-642-18812-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18812-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042204027", 
          "https://doi.org/10.1007/978-3-642-18812-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jprocont.2011.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051486044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.464381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061084749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.678614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061085244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.844217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061085702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3477.558824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061158130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/86.372895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061241158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcs.2006.1580152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061397370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2008.2005942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061527349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2013.2241060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061529136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2005.856072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2005.856072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2007.910708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061784823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3139652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062102961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/critrevbiomedeng.v30.i456.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068130656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amm.433-435.93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071948515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1302/0301-620x.47b3.418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076439767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1302/0301-620x.47b3.421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076439768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079180791", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/intechopen.68242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091408050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fuzzy.2008.4630376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093644292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aim.2003.1225465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093967679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2005.1545585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094416777"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "In this research, the combination of fuzzy/PD and EMG signals, as direct command control, is proposed. Although fuzzy/PD strategy was used to control force position of the artificial hand, the combination of that with EMG signaling to voluntary direct command control is a novel method. In this paper, the EMG signal and its role in effective communication between a DC motor with a voltage trigger and neurofeedback are initially explained. Moreover, by introducing a filtration method, EMG pulses are obtained as stepping pulses with a signal-specific height of a voltage between 0 and 6\u00a0V, according to EMG domain voltage, with a time interval adapted from the EMG stimulus pulses. Two data points from each channel of EMG were extracted. The domain of the voltage of the EMG signal is impacted on the output of the fuzzy logic unit, and also the time amount between each stimulus of the EMG signal is the input of the PD controller. By this method, a user can influence grip position and grasping force of his/her prosthesis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40638-018-0087-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050906", 
        "issn": [
          "2197-3768"
        ], 
        "name": "Robotics and Biomimetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Hybrid control combined with a voluntary biosignal to control a prosthetic hand", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f28ab6362c364345a075402ab83428c26f177132aa6fbbfe8c3cd62e762d2b2e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30294521"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101645154"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40638-018-0087-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107091332"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40638-018-0087-5", 
      "https://app.dimensions.ai/details/publication/pub.1107091332"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000560.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs40638-018-0087-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40638-018-0087-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40638-018-0087-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40638-018-0087-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40638-018-0087-5'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40638-018-0087-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2eb5cd6969484c2d81d1ffcd672d4725
4 schema:citation sg:pub.10.1007/978-1-4471-0449-0
5 sg:pub.10.1007/978-3-642-18812-1
6 https://app.dimensions.ai/details/publication/pub.1019901736
7 https://app.dimensions.ai/details/publication/pub.1079180791
8 https://doi.org/10.1001/jama.2009.116
9 https://doi.org/10.1016/j.jprocont.2011.12.001
10 https://doi.org/10.1109/10.464381
11 https://doi.org/10.1109/10.678614
12 https://doi.org/10.1109/10.844217
13 https://doi.org/10.1109/3477.558824
14 https://doi.org/10.1109/86.372895
15 https://doi.org/10.1109/aim.2003.1225465
16 https://doi.org/10.1109/fuzzy.2008.4630376
17 https://doi.org/10.1109/iros.2005.1545585
18 https://doi.org/10.1109/mcs.2006.1580152
19 https://doi.org/10.1109/tbme.2008.2005942
20 https://doi.org/10.1109/tbme.2013.2241060
21 https://doi.org/10.1109/tnsre.2005.856072
22 https://doi.org/10.1109/tro.2007.910708
23 https://doi.org/10.1115/1.3139652
24 https://doi.org/10.1155/2012/105074
25 https://doi.org/10.1302/0301-620x.47b3.418
26 https://doi.org/10.1302/0301-620x.47b3.421
27 https://doi.org/10.1615/critrevbiomedeng.v30.i456.80
28 https://doi.org/10.4028/www.scientific.net/amm.433-435.93
29 https://doi.org/10.5772/intechopen.68242
30 schema:datePublished 2018-12
31 schema:datePublishedReg 2018-12-01
32 schema:description In this research, the combination of fuzzy/PD and EMG signals, as direct command control, is proposed. Although fuzzy/PD strategy was used to control force position of the artificial hand, the combination of that with EMG signaling to voluntary direct command control is a novel method. In this paper, the EMG signal and its role in effective communication between a DC motor with a voltage trigger and neurofeedback are initially explained. Moreover, by introducing a filtration method, EMG pulses are obtained as stepping pulses with a signal-specific height of a voltage between 0 and 6 V, according to EMG domain voltage, with a time interval adapted from the EMG stimulus pulses. Two data points from each channel of EMG were extracted. The domain of the voltage of the EMG signal is impacted on the output of the fuzzy logic unit, and also the time amount between each stimulus of the EMG signal is the input of the PD controller. By this method, a user can influence grip position and grasping force of his/her prosthesis.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N600747c5f66849d88aeacfd615a35c3f
37 Naec74991939b4c16bf25d3f199a784f9
38 sg:journal.1050906
39 schema:name Hybrid control combined with a voluntary biosignal to control a prosthetic hand
40 schema:pagination 4
41 schema:productId N175b04381ff043bc87f0ef210411ecc6
42 N3c1a674b9c9d4ac8bd4c11ccc147ab3e
43 N94f563973a124a9a82c4a1c243f8a6f4
44 Nd52163c5b3f848e2946f36bd7d860afc
45 Nfec0527f900c49b78024f40710516285
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107091332
47 https://doi.org/10.1186/s40638-018-0087-5
48 schema:sdDatePublished 2019-04-10T13:26
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Na4cd3ed4fade47508cfec363b7823ec8
51 schema:url http://link.springer.com/10.1186%2Fs40638-018-0087-5
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N175b04381ff043bc87f0ef210411ecc6 schema:name dimensions_id
56 schema:value pub.1107091332
57 rdf:type schema:PropertyValue
58 N2eb5cd6969484c2d81d1ffcd672d4725 rdf:first sg:person.011546754770.80
59 rdf:rest Ned09c27c767f4b07bd34839da0d7c19b
60 N3c1a674b9c9d4ac8bd4c11ccc147ab3e schema:name doi
61 schema:value 10.1186/s40638-018-0087-5
62 rdf:type schema:PropertyValue
63 N51b4c32c1aca44ee9a7e1cd944e10451 rdf:first sg:person.011230065707.70
64 rdf:rest rdf:nil
65 N600747c5f66849d88aeacfd615a35c3f schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 N7885da4250b44ed2932d670d0b901c5f rdf:first sg:person.014333471003.19
68 rdf:rest N51b4c32c1aca44ee9a7e1cd944e10451
69 N94f563973a124a9a82c4a1c243f8a6f4 schema:name pubmed_id
70 schema:value 30294521
71 rdf:type schema:PropertyValue
72 Na4cd3ed4fade47508cfec363b7823ec8 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Naec74991939b4c16bf25d3f199a784f9 schema:volumeNumber 5
75 rdf:type schema:PublicationVolume
76 Nb18cf0aec6334c84afcf2e7d303b5da3 schema:affiliation https://www.grid.ac/institutes/grid.411600.2
77 schema:familyName Elahi
78 schema:givenName Seyed Mohammad
79 rdf:type schema:Person
80 Nd52163c5b3f848e2946f36bd7d860afc schema:name readcube_id
81 schema:value f28ab6362c364345a075402ab83428c26f177132aa6fbbfe8c3cd62e762d2b2e
82 rdf:type schema:PropertyValue
83 Ned09c27c767f4b07bd34839da0d7c19b rdf:first Nb18cf0aec6334c84afcf2e7d303b5da3
84 rdf:rest N7885da4250b44ed2932d670d0b901c5f
85 Nfec0527f900c49b78024f40710516285 schema:name nlm_unique_id
86 schema:value 101645154
87 rdf:type schema:PropertyValue
88 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information and Computing Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
92 schema:name Artificial Intelligence and Image Processing
93 rdf:type schema:DefinedTerm
94 sg:journal.1050906 schema:issn 2197-3768
95 schema:name Robotics and Biomimetics
96 rdf:type schema:Periodical
97 sg:person.011230065707.70 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
98 schema:familyName Zhang
99 schema:givenName WenZeng
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011230065707.70
101 rdf:type schema:Person
102 sg:person.011546754770.80 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
103 schema:familyName Bahrami Moqadam
104 schema:givenName Saeed
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011546754770.80
106 rdf:type schema:Person
107 sg:person.014333471003.19 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
108 schema:familyName Mo
109 schema:givenName An
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014333471003.19
111 rdf:type schema:Person
112 sg:pub.10.1007/978-1-4471-0449-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019901736
113 https://doi.org/10.1007/978-1-4471-0449-0
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-642-18812-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042204027
116 https://doi.org/10.1007/978-3-642-18812-1
117 rdf:type schema:CreativeWork
118 https://app.dimensions.ai/details/publication/pub.1019901736 schema:CreativeWork
119 https://app.dimensions.ai/details/publication/pub.1079180791 schema:CreativeWork
120 https://doi.org/10.1001/jama.2009.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027667476
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jprocont.2011.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051486044
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/10.464381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084749
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/10.678614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061085244
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/10.844217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061085702
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/3477.558824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061158130
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/86.372895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061241158
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/aim.2003.1225465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093967679
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/fuzzy.2008.4630376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093644292
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/iros.2005.1545585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094416777
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/mcs.2006.1580152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061397370
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/tbme.2008.2005942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061527349
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tbme.2013.2241060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529136
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tnsre.2005.856072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740126
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tro.2007.910708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784823
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1115/1.3139652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062102961
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1155/2012/105074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004842583
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1302/0301-620x.47b3.418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076439767
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1302/0301-620x.47b3.421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076439768
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1615/critrevbiomedeng.v30.i456.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068130656
159 rdf:type schema:CreativeWork
160 https://doi.org/10.4028/www.scientific.net/amm.433-435.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071948515
161 rdf:type schema:CreativeWork
162 https://doi.org/10.5772/intechopen.68242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091408050
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
165 schema:name Department of Mechanical Engineering, Tsinghua University, Beijing, China
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.411600.2 schema:alternateName Shahid Beheshti University of Medical Sciences
168 schema:name Department of Nuclear Science Engineering, Shahid Beheshti University, Tehran, Iran
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...