Improved 3D measurement with a novel preprocessing method in DFP View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Yi Xiao, You-Fu Li

ABSTRACT

Shadow and background are two common factors in digital fringe projection, which lead to ambiguity in three-dimensional measurement and thereby need to be seriously considered. Preprocessing is often needed to segment the object from invalid points. The existing segmentation approaches based on modulation normally perform well in pure dark background circumstances, which, however, lose accuracy in situations of white or complex background. In this paper, an accurate shadow and background removal technique is proposed, which segments the shadow by one threshold from modulation histogram and segments the background by the threshold in intensity histogram. Experiments are well designed and conducted to verify the effectiveness and reliability of the proposed method. More... »

PAGES

21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40638-017-0077-z

DOI

http://dx.doi.org/10.1186/s40638-017-0077-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092749570

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29201604


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "City University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Yi", 
        "id": "sg:person.07661702422.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07661702422.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "City University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "You-Fu", 
        "id": "sg:person.0633461175.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633461175.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1117/1.3251280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000740792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlaseng.2009.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016379995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2015.09.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021954943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.2931517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031579991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlaseng.2009.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032207881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlaseng.2003.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034259209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1979.4310076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042805607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2016.2597189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044840997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2006.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045079754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.3265551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047239539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-0233/22/3/035304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049418695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlaseng.2016.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051472527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlaseng.2004.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053275327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.49.001539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065125093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.54.006059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065132286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.011300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065193627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.011300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065193627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.35.003192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065229182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlaseng.2017.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085737539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470135976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109489987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109489987", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Shadow and background are two common factors in digital fringe projection, which lead to ambiguity in three-dimensional measurement and thereby need to be seriously considered. Preprocessing is often needed to segment the object from invalid points. The existing segmentation approaches based on modulation normally perform well in pure dark background circumstances, which, however, lose accuracy in situations of white or complex background. In this paper, an accurate shadow and background removal technique is proposed, which segments the shadow by one threshold from modulation histogram and segments the background by the threshold in intensity histogram. Experiments are well designed and conducted to verify the effectiveness and reliability of the proposed method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40638-017-0077-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6996225", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7426825", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1050906", 
        "issn": [
          "2197-3768"
        ], 
        "name": "Robotics and Biomimetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Improved 3D measurement with a novel preprocessing method in DFP", 
    "pagination": "21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1ee26996ac98940faf398092bab96cb6a46e19f31f97b5067d22fc50320093f9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29201604"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101645154"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40638-017-0077-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092749570"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40638-017-0077-z", 
      "https://app.dimensions.ai/details/publication/pub.1092749570"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/s40638-017-0077-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40638-017-0077-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40638-017-0077-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40638-017-0077-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40638-017-0077-z'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40638-017-0077-z schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N78619a398f7c4a509d7fe785dc525882
4 schema:citation https://app.dimensions.ai/details/publication/pub.1109489987
5 https://doi.org/10.1002/9780470135976
6 https://doi.org/10.1016/j.optcom.2015.09.084
7 https://doi.org/10.1016/j.optlaseng.2003.11.002
8 https://doi.org/10.1016/j.optlaseng.2004.08.008
9 https://doi.org/10.1016/j.optlaseng.2009.06.005
10 https://doi.org/10.1016/j.optlaseng.2009.09.001
11 https://doi.org/10.1016/j.optlaseng.2016.09.013
12 https://doi.org/10.1016/j.optlaseng.2017.05.006
13 https://doi.org/10.1016/j.patrec.2006.03.009
14 https://doi.org/10.1088/0957-0233/22/3/035304
15 https://doi.org/10.1109/access.2016.2597189
16 https://doi.org/10.1109/tsmc.1979.4310076
17 https://doi.org/10.1117/1.2931517
18 https://doi.org/10.1117/1.3251280
19 https://doi.org/10.1117/1.3265551
20 https://doi.org/10.1364/ao.49.001539
21 https://doi.org/10.1364/ao.54.006059
22 https://doi.org/10.1364/oe.18.011300
23 https://doi.org/10.1364/ol.35.003192
24 schema:datePublished 2017-12
25 schema:datePublishedReg 2017-12-01
26 schema:description Shadow and background are two common factors in digital fringe projection, which lead to ambiguity in three-dimensional measurement and thereby need to be seriously considered. Preprocessing is often needed to segment the object from invalid points. The existing segmentation approaches based on modulation normally perform well in pure dark background circumstances, which, however, lose accuracy in situations of white or complex background. In this paper, an accurate shadow and background removal technique is proposed, which segments the shadow by one threshold from modulation histogram and segments the background by the threshold in intensity histogram. Experiments are well designed and conducted to verify the effectiveness and reliability of the proposed method.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf Nac20e2e9cbf04b2eb38c75b495b072a4
31 Nbc3241bf76ea4153b7faa273e50ff248
32 sg:journal.1050906
33 schema:name Improved 3D measurement with a novel preprocessing method in DFP
34 schema:pagination 21
35 schema:productId N23098814289f4247972044e2f2013eed
36 N2de8549d097842148caf5bb065d37bf7
37 N4f7579bd402c448caa21c1aad5267cac
38 N7415977a66d440468a5d6073f80b1b22
39 Nd755a2477fa14751a9778d84a273c9fb
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092749570
41 https://doi.org/10.1186/s40638-017-0077-z
42 schema:sdDatePublished 2019-04-10T15:14
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nea000bb3478f48e4a1ccd8a9c401dc77
45 schema:url http://link.springer.com/10.1186/s40638-017-0077-z
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N23098814289f4247972044e2f2013eed schema:name dimensions_id
50 schema:value pub.1092749570
51 rdf:type schema:PropertyValue
52 N2de8549d097842148caf5bb065d37bf7 schema:name doi
53 schema:value 10.1186/s40638-017-0077-z
54 rdf:type schema:PropertyValue
55 N4f7579bd402c448caa21c1aad5267cac schema:name nlm_unique_id
56 schema:value 101645154
57 rdf:type schema:PropertyValue
58 N7415977a66d440468a5d6073f80b1b22 schema:name pubmed_id
59 schema:value 29201604
60 rdf:type schema:PropertyValue
61 N78619a398f7c4a509d7fe785dc525882 rdf:first sg:person.07661702422.28
62 rdf:rest Ncebaea6d1dde4aa4b3a2a94d8034df8c
63 Nac20e2e9cbf04b2eb38c75b495b072a4 schema:volumeNumber 4
64 rdf:type schema:PublicationVolume
65 Nbc3241bf76ea4153b7faa273e50ff248 schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 Ncebaea6d1dde4aa4b3a2a94d8034df8c rdf:first sg:person.0633461175.90
68 rdf:rest rdf:nil
69 Nd755a2477fa14751a9778d84a273c9fb schema:name readcube_id
70 schema:value 1ee26996ac98940faf398092bab96cb6a46e19f31f97b5067d22fc50320093f9
71 rdf:type schema:PropertyValue
72 Nea000bb3478f48e4a1ccd8a9c401dc77 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
75 schema:name Medical and Health Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
78 schema:name Clinical Sciences
79 rdf:type schema:DefinedTerm
80 sg:grant.6996225 http://pending.schema.org/fundedItem sg:pub.10.1186/s40638-017-0077-z
81 rdf:type schema:MonetaryGrant
82 sg:grant.7426825 http://pending.schema.org/fundedItem sg:pub.10.1186/s40638-017-0077-z
83 rdf:type schema:MonetaryGrant
84 sg:journal.1050906 schema:issn 2197-3768
85 schema:name Robotics and Biomimetics
86 rdf:type schema:Periodical
87 sg:person.0633461175.90 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
88 schema:familyName Li
89 schema:givenName You-Fu
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633461175.90
91 rdf:type schema:Person
92 sg:person.07661702422.28 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
93 schema:familyName Xiao
94 schema:givenName Yi
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07661702422.28
96 rdf:type schema:Person
97 https://app.dimensions.ai/details/publication/pub.1109489987 schema:CreativeWork
98 https://doi.org/10.1002/9780470135976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109489987
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.optcom.2015.09.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021954943
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.optlaseng.2003.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034259209
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.optlaseng.2004.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053275327
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.optlaseng.2009.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032207881
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.optlaseng.2009.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016379995
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.optlaseng.2016.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051472527
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.optlaseng.2017.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085737539
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.patrec.2006.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045079754
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1088/0957-0233/22/3/035304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049418695
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/access.2016.2597189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044840997
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tsmc.1979.4310076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042805607
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1117/1.2931517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031579991
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1117/1.3251280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000740792
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1117/1.3265551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047239539
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1364/ao.49.001539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065125093
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1364/ao.54.006059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065132286
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1364/oe.18.011300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065193627
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1364/ol.35.003192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065229182
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.35030.35 schema:alternateName City University of Hong Kong
137 schema:name Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...