Improving low-cost inertial-measurement-unit (IMU)-based motion tracking accuracy for a biomorphic hyper-redundant snake robot View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Weixin Yang, Alexandr Bajenov, Yantao Shen

ABSTRACT

This paper develops and experimentally validates a 3D-printed snake robot prototype. Its structure is designed to allocate limited room for each functional module (including an external power module, battery power module, the wireless control and transmission module and some detective sensors), so as to ensure the snake robot works in different environments. In order to control and track the snake robot, a low-cost MEMS-IMU (micro-electro-mechanical systems inertial measurement unit)-based snake robot motion tracking system is developed. Three algorithms (low-pass filter, baseline calibration, and Kalman filter) are used to eliminate noise from IMU's acceleration data, thus minimizing the noise influence to tracking accuracy. Through signal processing, the IMU acceleration data can be effectively used for motion tracking. The result from the video tracking software is employed as a reference for comparison, so as to evaluate the motion tracking algorithm efficiency. The comparison results demonstrate high efficiency of the proposed IMU-based motion tracking algorithm. More... »

PAGES

16

References to SciGraph publications

  • 2011-06. Quasi real-time gait event detection using shank-attached gyroscopes in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2006-01. Analysis of Creeping Locomotion of a Snake-like Robot on a Slope in AUTONOMOUS ROBOTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40638-017-0069-z

    DOI

    http://dx.doi.org/10.1186/s40638-017-0069-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092633418

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29170730


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Nevada Reno", 
              "id": "https://www.grid.ac/institutes/grid.266818.3", 
              "name": [
                "Electrical and Biomedical Engineering, University of Nevada, Reno, N. Virginia St, 89557, Reno, NV, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Weixin", 
            "id": "sg:person.014265546303.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265546303.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Nevada Reno", 
              "id": "https://www.grid.ac/institutes/grid.266818.3", 
              "name": [
                "Electrical and Biomedical Engineering, University of Nevada, Reno, N. Virginia St, 89557, Reno, NV, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bajenov", 
            "givenName": "Alexandr", 
            "id": "sg:person.015660507303.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015660507303.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Nevada Reno", 
              "id": "https://www.grid.ac/institutes/grid.266818.3", 
              "name": [
                "Electrical and Biomedical Engineering, University of Nevada, Reno, N. Virginia St, 89557, Reno, NV, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shen", 
            "givenName": "Yantao", 
            "id": "sg:person.016462533703.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016462533703.58"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10514-006-5204-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020985892", 
              "https://doi.org/10.1007/s10514-006-5204-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10514-006-5204-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020985892", 
              "https://doi.org/10.1007/s10514-006-5204-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1349822.1349848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030759792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-011-0736-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044678126", 
              "https://doi.org/10.1007/s11517-011-0736-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2006.875664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061526691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tim.2012.2218692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061639296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078096646", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icma.2005.1626777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093916414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/vrais.1996.490527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095337417"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "This paper develops and experimentally validates a 3D-printed snake robot prototype. Its structure is designed to allocate limited room for each functional module (including an external power module, battery power module, the wireless control and transmission module and some detective sensors), so as to ensure the snake robot works in different environments. In order to control and track the snake robot, a low-cost MEMS-IMU (micro-electro-mechanical systems inertial measurement unit)-based snake robot motion tracking system is developed. Three algorithms (low-pass filter, baseline calibration, and Kalman filter) are used to eliminate noise from IMU's acceleration data, thus minimizing the noise influence to tracking accuracy. Through signal processing, the IMU acceleration data can be effectively used for motion tracking. The result from the video tracking software is employed as a reference for comparison, so as to evaluate the motion tracking algorithm efficiency. The comparison results demonstrate high efficiency of the proposed IMU-based motion tracking algorithm.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s40638-017-0069-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3812900", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5496332", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1050906", 
            "issn": [
              "2197-3768"
            ], 
            "name": "Robotics and Biomimetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Improving low-cost inertial-measurement-unit (IMU)-based motion tracking accuracy for a biomorphic hyper-redundant snake robot", 
        "pagination": "16", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9b30e86ef2729f09666cce1cbde2a3239dab9ff68f097d3ca0ca3c22868809e8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29170730"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101645154"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40638-017-0069-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092633418"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40638-017-0069-z", 
          "https://app.dimensions.ai/details/publication/pub.1092633418"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000609.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs40638-017-0069-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40638-017-0069-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40638-017-0069-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40638-017-0069-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40638-017-0069-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    111 TRIPLES      21 PREDICATES      37 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40638-017-0069-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nab0aa3a8b6c14019b6aeaacb1b64b6a1
    4 schema:citation sg:pub.10.1007/s10514-006-5204-6
    5 sg:pub.10.1007/s11517-011-0736-0
    6 https://app.dimensions.ai/details/publication/pub.1078096646
    7 https://doi.org/10.1109/icma.2005.1626777
    8 https://doi.org/10.1109/tbme.2006.875664
    9 https://doi.org/10.1109/tim.2012.2218692
    10 https://doi.org/10.1109/vrais.1996.490527
    11 https://doi.org/10.1145/1349822.1349848
    12 schema:datePublished 2017-12
    13 schema:datePublishedReg 2017-12-01
    14 schema:description This paper develops and experimentally validates a 3D-printed snake robot prototype. Its structure is designed to allocate limited room for each functional module (including an external power module, battery power module, the wireless control and transmission module and some detective sensors), so as to ensure the snake robot works in different environments. In order to control and track the snake robot, a low-cost MEMS-IMU (micro-electro-mechanical systems inertial measurement unit)-based snake robot motion tracking system is developed. Three algorithms (low-pass filter, baseline calibration, and Kalman filter) are used to eliminate noise from IMU's acceleration data, thus minimizing the noise influence to tracking accuracy. Through signal processing, the IMU acceleration data can be effectively used for motion tracking. The result from the video tracking software is employed as a reference for comparison, so as to evaluate the motion tracking algorithm efficiency. The comparison results demonstrate high efficiency of the proposed IMU-based motion tracking algorithm.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N1c4e3d62c1974ed396cdb2622102d3a8
    19 N2b215ffb6e16400482c885c46ecb3ac6
    20 sg:journal.1050906
    21 schema:name Improving low-cost inertial-measurement-unit (IMU)-based motion tracking accuracy for a biomorphic hyper-redundant snake robot
    22 schema:pagination 16
    23 schema:productId N067ad03353c54ec5b87f4b61efe9f4af
    24 N0d80a9acd4a445cba4861bc9c5e014ff
    25 N830227304d444fafb6aa1783da3c8855
    26 N89906930a17441c885976299be9f9ee7
    27 N92a00020b8b14127af21b444e1c25289
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092633418
    29 https://doi.org/10.1186/s40638-017-0069-z
    30 schema:sdDatePublished 2019-04-10T16:05
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N53c0c2bf793249e990bdcddc6307d98b
    33 schema:url https://link.springer.com/10.1186%2Fs40638-017-0069-z
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N067ad03353c54ec5b87f4b61efe9f4af schema:name nlm_unique_id
    38 schema:value 101645154
    39 rdf:type schema:PropertyValue
    40 N0d80a9acd4a445cba4861bc9c5e014ff schema:name readcube_id
    41 schema:value 9b30e86ef2729f09666cce1cbde2a3239dab9ff68f097d3ca0ca3c22868809e8
    42 rdf:type schema:PropertyValue
    43 N1c4e3d62c1974ed396cdb2622102d3a8 schema:volumeNumber 4
    44 rdf:type schema:PublicationVolume
    45 N2b215ffb6e16400482c885c46ecb3ac6 schema:issueNumber 1
    46 rdf:type schema:PublicationIssue
    47 N53c0c2bf793249e990bdcddc6307d98b schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 N830227304d444fafb6aa1783da3c8855 schema:name pubmed_id
    50 schema:value 29170730
    51 rdf:type schema:PropertyValue
    52 N89906930a17441c885976299be9f9ee7 schema:name doi
    53 schema:value 10.1186/s40638-017-0069-z
    54 rdf:type schema:PropertyValue
    55 N92a00020b8b14127af21b444e1c25289 schema:name dimensions_id
    56 schema:value pub.1092633418
    57 rdf:type schema:PropertyValue
    58 Nab0aa3a8b6c14019b6aeaacb1b64b6a1 rdf:first sg:person.014265546303.40
    59 rdf:rest Nbbb2e7a074f44110a8a593968d43e60c
    60 Nbbb2e7a074f44110a8a593968d43e60c rdf:first sg:person.015660507303.24
    61 rdf:rest Nf676c41cf21e44659f6262588646ab57
    62 Nf676c41cf21e44659f6262588646ab57 rdf:first sg:person.016462533703.58
    63 rdf:rest rdf:nil
    64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Information and Computing Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Artificial Intelligence and Image Processing
    69 rdf:type schema:DefinedTerm
    70 sg:grant.3812900 http://pending.schema.org/fundedItem sg:pub.10.1186/s40638-017-0069-z
    71 rdf:type schema:MonetaryGrant
    72 sg:grant.5496332 http://pending.schema.org/fundedItem sg:pub.10.1186/s40638-017-0069-z
    73 rdf:type schema:MonetaryGrant
    74 sg:journal.1050906 schema:issn 2197-3768
    75 schema:name Robotics and Biomimetics
    76 rdf:type schema:Periodical
    77 sg:person.014265546303.40 schema:affiliation https://www.grid.ac/institutes/grid.266818.3
    78 schema:familyName Yang
    79 schema:givenName Weixin
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265546303.40
    81 rdf:type schema:Person
    82 sg:person.015660507303.24 schema:affiliation https://www.grid.ac/institutes/grid.266818.3
    83 schema:familyName Bajenov
    84 schema:givenName Alexandr
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015660507303.24
    86 rdf:type schema:Person
    87 sg:person.016462533703.58 schema:affiliation https://www.grid.ac/institutes/grid.266818.3
    88 schema:familyName Shen
    89 schema:givenName Yantao
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016462533703.58
    91 rdf:type schema:Person
    92 sg:pub.10.1007/s10514-006-5204-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020985892
    93 https://doi.org/10.1007/s10514-006-5204-6
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/s11517-011-0736-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044678126
    96 https://doi.org/10.1007/s11517-011-0736-0
    97 rdf:type schema:CreativeWork
    98 https://app.dimensions.ai/details/publication/pub.1078096646 schema:CreativeWork
    99 https://doi.org/10.1109/icma.2005.1626777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093916414
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1109/tbme.2006.875664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526691
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1109/tim.2012.2218692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061639296
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1109/vrais.1996.490527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095337417
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1145/1349822.1349848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030759792
    108 rdf:type schema:CreativeWork
    109 https://www.grid.ac/institutes/grid.266818.3 schema:alternateName University of Nevada Reno
    110 schema:name Electrical and Biomedical Engineering, University of Nevada, Reno, N. Virginia St, 89557, Reno, NV, USA
    111 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...