Investigation of regional variation in core flow models using spherical Slepian functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Hannah F. Rogers, Ciarán D. Beggan, Kathryn A. Whaler

ABSTRACT

By assuming that changes in the magnetic field in the Earth’s outer core are advection-dominated on short timescales, models of the core surface flow can be deduced from secular variation. Such models are known to be under-determined and thus require other assumptions to produce feasible flows. There are regions where poor knowledge of the core flow dynamics gives rise to further uncertainty, such as within the tangent cylinder, and assumptions about the nature of the flow may lead to ambiguous patches, such as if it is assumed to be strongly tangentially geostrophic. We use spherical Slepian functions to spatially and spectrally separate core flow models, confining the flow to either inside or outside these regions of interest. In each region we examine the properties of the flow and analyze its contribution to the overall model. We use three forms of flow model: (a) synthetic models from randomly generated coefficients with blue, red and white energy spectra, (b) a snapshot of a numerical geodynamo simulation and (c) a model inverted from satellite magnetic field measurements. We find that the Slepian decomposition generates unwanted spatial leakage which partially obscures flow in the region of interest, particularly along the boundaries. Possible reasons for this include the use of spherical Slepian functions to decompose a scalar quantity that is then differentiated to give the vector function of interest, and the spectral frequency content of the models. These results will guide subsequent investigation of flow within localized regions, including applying vector Slepian decomposition methods. More... »

PAGES

19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40623-019-0997-7

DOI

http://dx.doi.org/10.1186/s40623-019-0997-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112219585


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, EH9 3FE, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogers", 
        "givenName": "Hannah F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "British Geological Society, Research Avenue South, Riccarton, EH14 4AP, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beggan", 
        "givenName": "Ciar\u00e1n D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, EH9 3FE, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Whaler", 
        "givenName": "Kathryn A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/gji/ggs122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001323777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.1986.tb04536.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003941255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-4423-6_154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005382609", 
          "https://doi.org/10.1007/978-1-4020-4423-6_154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.5047/eps.2010.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006384422", 
          "https://doi.org/10.5047/eps.2010.07.004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bf03351943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008011345", 
          "https://doi.org/10.1186/bf03351943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2221055a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008137120", 
          "https://doi.org/10.1038/2221055a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acha.2012.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008171940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40623-015-0228-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015525952", 
          "https://doi.org/10.1186/s40623-015-0228-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2008.03854.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016311205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl067759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022380621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl067759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022380621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gji/ggt077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023069662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40623-016-0486-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023941820", 
          "https://doi.org/10.1186/s40623-016-0486-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40623-016-0486-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023941820", 
          "https://doi.org/10.1186/s40623-016-0486-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005gl023841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024088038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005gl023841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024088038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/311734a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024172053", 
          "https://doi.org/10.1038/311734a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2009.04119.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024403828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2009.04119.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024403828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-53802-4.00141-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025271412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.825730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025583596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025599861", 
          "https://doi.org/10.1038/nature12574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2008.03741.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026430449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5636/jgg.17.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026758706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416620a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028718046", 
          "https://doi.org/10.1038/416620a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416620a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028718046", 
          "https://doi.org/10.1038/416620a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2009.04111.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029727348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2009.04111.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029727348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2006.03065.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030078520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006gl026616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031601153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsl.2015.01.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031687787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1206785109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034568846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-9201(85)90140-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035774456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-9201(85)90140-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035774456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015je004869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039047597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-246x.1998.00424.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040413981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040434076", 
          "https://doi.org/10.1038/ngeo2859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsl.2010.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043755023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047004453", 
          "https://doi.org/10.1038/ngeo2733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jb003836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047081667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jb003836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047081667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1968.0014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047770446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01546-5_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047782107", 
          "https://doi.org/10.1007/978-3-642-01546-5_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01546-5_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047782107", 
          "https://doi.org/10.1007/978-3-642-01546-5_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/46017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052064970", 
          "https://doi.org/10.1038/46017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/46017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052064970", 
          "https://doi.org/10.1038/46017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pepi.2015.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052931192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gji/ggw268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059638282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.274.5294.1887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062555220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144504445765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40623-017-0636-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084927283", 
          "https://doi.org/10.1186/s40623-017-0636-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40623-017-0636-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084927283", 
          "https://doi.org/10.1186/s40623-017-0636-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pepi.2017.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091893702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gji/ggy297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105743902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1717454115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107664805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1717454115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107664805"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "By assuming that changes in the magnetic field in the Earth\u2019s outer core are advection-dominated on short timescales, models of the core surface flow can be deduced from secular variation. Such models are known to be under-determined and thus require other assumptions to produce feasible flows. There are regions where poor knowledge of the core flow dynamics gives rise to further uncertainty, such as within the tangent cylinder, and assumptions about the nature of the flow may lead to ambiguous patches, such as if it is assumed to be strongly tangentially geostrophic. We use spherical Slepian functions to spatially and spectrally separate core flow models, confining the flow to either inside or outside these regions of interest. In each region we examine the properties of the flow and analyze its contribution to the overall model. We use three forms of flow model: (a) synthetic models from randomly generated coefficients with blue, red and white energy spectra, (b) a snapshot of a numerical geodynamo simulation and (c) a model inverted from satellite magnetic field measurements. We find that the Slepian decomposition generates unwanted spatial leakage which partially obscures flow in the region of interest, particularly along the boundaries. Possible reasons for this include the use of spherical Slepian functions to decompose a scalar quantity that is then differentiated to give the vector function of interest, and the spectral frequency content of the models. These results will guide subsequent investigation of flow within localized regions, including applying vector Slepian decomposition methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40623-019-0997-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7157408", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1294798", 
        "issn": [
          "1343-8832", 
          "1880-5981"
        ], 
        "name": "Earth, Planets and Space", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "name": "Investigation of regional variation in core flow models using spherical Slepian functions", 
    "pagination": "19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ca2b800931de4f208751922eea8b21a6dbe0b9ed32a192e0a8132014827d2c5a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40623-019-0997-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112219585"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40623-019-0997-7", 
      "https://app.dimensions.ai/details/publication/pub.1112219585"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47991_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40623-019-0997-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40623-019-0997-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40623-019-0997-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40623-019-0997-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40623-019-0997-7'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40623-019-0997-7 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N2f1c2937926149f7b40e1d946c6ee9bb
4 schema:citation sg:pub.10.1007/978-1-4020-4423-6_154
5 sg:pub.10.1007/978-3-642-01546-5_30
6 sg:pub.10.1038/2221055a0
7 sg:pub.10.1038/311734a0
8 sg:pub.10.1038/416620a
9 sg:pub.10.1038/46017
10 sg:pub.10.1038/nature12574
11 sg:pub.10.1038/ngeo2733
12 sg:pub.10.1038/ngeo2859
13 sg:pub.10.1186/bf03351943
14 sg:pub.10.1186/s40623-015-0228-9
15 sg:pub.10.1186/s40623-016-0486-1
16 sg:pub.10.1186/s40623-017-0636-0
17 sg:pub.10.5047/eps.2010.07.004
18 https://doi.org/10.1002/2015je004869
19 https://doi.org/10.1002/2016gl067759
20 https://doi.org/10.1016/0031-9201(85)90140-2
21 https://doi.org/10.1016/b978-0-444-53802-4.00141-x
22 https://doi.org/10.1016/j.acha.2012.12.001
23 https://doi.org/10.1016/j.epsl.2010.06.009
24 https://doi.org/10.1016/j.epsl.2015.01.029
25 https://doi.org/10.1016/j.pepi.2015.07.001
26 https://doi.org/10.1016/j.pepi.2017.07.001
27 https://doi.org/10.1029/2005gl023841
28 https://doi.org/10.1029/2005jb003836
29 https://doi.org/10.1029/2006gl026616
30 https://doi.org/10.1046/j.1365-246x.1998.00424.x
31 https://doi.org/10.1073/pnas.1206785109
32 https://doi.org/10.1073/pnas.1717454115
33 https://doi.org/10.1093/gji/ggs122
34 https://doi.org/10.1093/gji/ggt077
35 https://doi.org/10.1093/gji/ggw268
36 https://doi.org/10.1093/gji/ggy297
37 https://doi.org/10.1098/rsta.1968.0014
38 https://doi.org/10.1111/j.1365-246x.1986.tb04536.x
39 https://doi.org/10.1111/j.1365-246x.2006.03065.x
40 https://doi.org/10.1111/j.1365-246x.2008.03741.x
41 https://doi.org/10.1111/j.1365-246x.2008.03854.x
42 https://doi.org/10.1111/j.1365-246x.2009.04111.x
43 https://doi.org/10.1111/j.1365-246x.2009.04119.x
44 https://doi.org/10.1117/12.825730
45 https://doi.org/10.1126/science.274.5294.1887
46 https://doi.org/10.1137/s0036144504445765
47 https://doi.org/10.5636/jgg.17.137
48 schema:datePublished 2019-12
49 schema:datePublishedReg 2019-12-01
50 schema:description By assuming that changes in the magnetic field in the Earth’s outer core are advection-dominated on short timescales, models of the core surface flow can be deduced from secular variation. Such models are known to be under-determined and thus require other assumptions to produce feasible flows. There are regions where poor knowledge of the core flow dynamics gives rise to further uncertainty, such as within the tangent cylinder, and assumptions about the nature of the flow may lead to ambiguous patches, such as if it is assumed to be strongly tangentially geostrophic. We use spherical Slepian functions to spatially and spectrally separate core flow models, confining the flow to either inside or outside these regions of interest. In each region we examine the properties of the flow and analyze its contribution to the overall model. We use three forms of flow model: (a) synthetic models from randomly generated coefficients with blue, red and white energy spectra, (b) a snapshot of a numerical geodynamo simulation and (c) a model inverted from satellite magnetic field measurements. We find that the Slepian decomposition generates unwanted spatial leakage which partially obscures flow in the region of interest, particularly along the boundaries. Possible reasons for this include the use of spherical Slepian functions to decompose a scalar quantity that is then differentiated to give the vector function of interest, and the spectral frequency content of the models. These results will guide subsequent investigation of flow within localized regions, including applying vector Slepian decomposition methods.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf N5b9723393a2641e4838d24e87c84ea0f
55 N7dbb17cf76814a2bba5ea4c88208aa40
56 sg:journal.1294798
57 schema:name Investigation of regional variation in core flow models using spherical Slepian functions
58 schema:pagination 19
59 schema:productId N77e170e24ee64140871477cc6a2c75df
60 Ncd32bd4bc0bd4bcfa59a84093bfb8b33
61 Nf413bc9524a6453190b3883794661340
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112219585
63 https://doi.org/10.1186/s40623-019-0997-7
64 schema:sdDatePublished 2019-04-11T09:13
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Na9a7b807a7c440a9bbb04d9250978ff9
67 schema:url https://link.springer.com/10.1186%2Fs40623-019-0997-7
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N1f0287150a684e1cba95ad3720090f0d rdf:first Nd21c784f35e84046ac40d867301040e1
72 rdf:rest rdf:nil
73 N2f1c2937926149f7b40e1d946c6ee9bb rdf:first Nac79d678846b4945b82ad0b0904aa7a4
74 rdf:rest Nf70c38de2d81497db665eea2508ce783
75 N5b9723393a2641e4838d24e87c84ea0f schema:volumeNumber 71
76 rdf:type schema:PublicationVolume
77 N77e170e24ee64140871477cc6a2c75df schema:name readcube_id
78 schema:value ca2b800931de4f208751922eea8b21a6dbe0b9ed32a192e0a8132014827d2c5a
79 rdf:type schema:PropertyValue
80 N7dbb17cf76814a2bba5ea4c88208aa40 schema:issueNumber 1
81 rdf:type schema:PublicationIssue
82 Na8f6a5613fa84537ae20cce41bb4996f schema:name British Geological Society, Research Avenue South, Riccarton, EH14 4AP, Edinburgh, UK
83 rdf:type schema:Organization
84 Na9a7b807a7c440a9bbb04d9250978ff9 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nac79d678846b4945b82ad0b0904aa7a4 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
87 schema:familyName Rogers
88 schema:givenName Hannah F.
89 rdf:type schema:Person
90 Ncd32bd4bc0bd4bcfa59a84093bfb8b33 schema:name doi
91 schema:value 10.1186/s40623-019-0997-7
92 rdf:type schema:PropertyValue
93 Nd21c784f35e84046ac40d867301040e1 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
94 schema:familyName Whaler
95 schema:givenName Kathryn A.
96 rdf:type schema:Person
97 Nf0780e29ec354b0f8ca66ae7603f5257 schema:affiliation Na8f6a5613fa84537ae20cce41bb4996f
98 schema:familyName Beggan
99 schema:givenName Ciarán D.
100 rdf:type schema:Person
101 Nf413bc9524a6453190b3883794661340 schema:name dimensions_id
102 schema:value pub.1112219585
103 rdf:type schema:PropertyValue
104 Nf70c38de2d81497db665eea2508ce783 rdf:first Nf0780e29ec354b0f8ca66ae7603f5257
105 rdf:rest N1f0287150a684e1cba95ad3720090f0d
106 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
107 schema:name Engineering
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
110 schema:name Interdisciplinary Engineering
111 rdf:type schema:DefinedTerm
112 sg:grant.7157408 http://pending.schema.org/fundedItem sg:pub.10.1186/s40623-019-0997-7
113 rdf:type schema:MonetaryGrant
114 sg:journal.1294798 schema:issn 1343-8832
115 1880-5981
116 schema:name Earth, Planets and Space
117 rdf:type schema:Periodical
118 sg:pub.10.1007/978-1-4020-4423-6_154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005382609
119 https://doi.org/10.1007/978-1-4020-4423-6_154
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-642-01546-5_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047782107
122 https://doi.org/10.1007/978-3-642-01546-5_30
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/2221055a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008137120
125 https://doi.org/10.1038/2221055a0
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/311734a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024172053
128 https://doi.org/10.1038/311734a0
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/416620a schema:sameAs https://app.dimensions.ai/details/publication/pub.1028718046
131 https://doi.org/10.1038/416620a
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/46017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052064970
134 https://doi.org/10.1038/46017
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature12574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025599861
137 https://doi.org/10.1038/nature12574
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/ngeo2733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047004453
140 https://doi.org/10.1038/ngeo2733
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/ngeo2859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040434076
143 https://doi.org/10.1038/ngeo2859
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/bf03351943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008011345
146 https://doi.org/10.1186/bf03351943
147 rdf:type schema:CreativeWork
148 sg:pub.10.1186/s40623-015-0228-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015525952
149 https://doi.org/10.1186/s40623-015-0228-9
150 rdf:type schema:CreativeWork
151 sg:pub.10.1186/s40623-016-0486-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023941820
152 https://doi.org/10.1186/s40623-016-0486-1
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/s40623-017-0636-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084927283
155 https://doi.org/10.1186/s40623-017-0636-0
156 rdf:type schema:CreativeWork
157 sg:pub.10.5047/eps.2010.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006384422
158 https://doi.org/10.5047/eps.2010.07.004
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/2015je004869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039047597
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/2016gl067759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022380621
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/0031-9201(85)90140-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035774456
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/b978-0-444-53802-4.00141-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025271412
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.acha.2012.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008171940
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.epsl.2010.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043755023
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.epsl.2015.01.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031687787
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.pepi.2015.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052931192
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.pepi.2017.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091893702
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1029/2005gl023841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024088038
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1029/2005jb003836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047081667
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1029/2006gl026616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031601153
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1046/j.1365-246x.1998.00424.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040413981
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1073/pnas.1206785109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034568846
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1073/pnas.1717454115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107664805
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/gji/ggs122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001323777
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/gji/ggt077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023069662
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/gji/ggw268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059638282
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/gji/ggy297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105743902
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1098/rsta.1968.0014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047770446
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1111/j.1365-246x.1986.tb04536.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003941255
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1111/j.1365-246x.2006.03065.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030078520
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/j.1365-246x.2008.03741.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026430449
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1111/j.1365-246x.2008.03854.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016311205
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1111/j.1365-246x.2009.04111.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029727348
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1111/j.1365-246x.2009.04119.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024403828
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1117/12.825730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025583596
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.274.5294.1887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062555220
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1137/s0036144504445765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877851
217 rdf:type schema:CreativeWork
218 https://doi.org/10.5636/jgg.17.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026758706
219 rdf:type schema:CreativeWork
220 https://www.grid.ac/institutes/grid.4305.2 schema:alternateName University of Edinburgh
221 schema:name School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, EH9 3FE, Edinburgh, UK
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...