Ground geomagnetic field and GIC response to March 17, 2015, storm View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Olga V. Kozyreva, Vyacheslav A. Pilipenko, Vladimir B. Belakhovsky, Yaroslav A. Sakharov

ABSTRACT

The St. Patrick’s Day geomagnetic storm on March 17, 2015, has been chosen by the space community for synergetic analysis to build a more comprehensive picture of the storm’s origin and evolution. This storm had an unusually long (~ 17 h) main phase. During this period, many substorm-like activations occurred. These activations resulted in bursts of geomagnetically induced currents (GICs) in power lines on the Kola peninsula. To examine the substorm activations in more detail, we apply various data processing techniques for the world-wide array of magnetometers: the virtual magnetograms, magnetic latitude–local time (MLT) snapshots, and magnetic keograms. These techniques are simple tools that are supplementary to more advanced facilities developed for the analysis of SuperDARN, IMAGE, and CARISMA arrays. We compare the global spatial localization and time evolution of the geomagnetic X-component disturbance and magnetic field variability measured by the Hilbert transform of time derivative dB/dt. The latitude-MLT mapping of these magnitudes shows that very often a region with highest magnetic variability does not overlap with a substorm “epicenter” but is shifted to its poleward or equatorward boundaries. Highest variability of the geomagnetic field, and consequently intense GICs, are caused by medium-scale fast varying structures. There is no one-to-one correspondence between substorm intensity and GIC magnitude. More... »

PAGES

157

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40623-018-0933-2

DOI

http://dx.doi.org/10.1186/s40623-018-0933-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107341528


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Schmidt Institute of Physics of the Earth", 
          "id": "https://www.grid.ac/institutes/grid.435352.6", 
          "name": [
            "Institute of Physics of the Earth, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozyreva", 
        "givenName": "Olga V.", 
        "id": "sg:person.013323046147.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323046147.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geophysical Center", 
          "id": "https://www.grid.ac/institutes/grid.465308.c", 
          "name": [
            "Geophysical Center, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pilipenko", 
        "givenName": "Vyacheslav A.", 
        "id": "sg:person.010715034475.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010715034475.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polar Geophysical Institute", 
          "id": "https://www.grid.ac/institutes/grid.467115.0", 
          "name": [
            "Polar Geophysical Institute, Apatity, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belakhovsky", 
        "givenName": "Vladimir B.", 
        "id": "sg:person.015243317657.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015243317657.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polar Geophysical Institute", 
          "id": "https://www.grid.ac/institutes/grid.467115.0", 
          "name": [
            "Polar Geophysical Institute, Apatity, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakharov", 
        "givenName": "Yaroslav A.", 
        "id": "sg:person.012234460644.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012234460644.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2011sw000680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004089589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015gl064816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010169040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016ja022400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014951872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/angeo-19-1107-2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020077202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/angeo-19-1107-2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020077202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0273-1177(97)01096-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027808649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016ja023237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031664757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl068257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031687937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl068257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031687937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015ja021509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033927959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011ja016779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033974314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/swe.20073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042871746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015sw001213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043577903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/gm125p0011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046031508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/97gl00538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049401757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2012ja017683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050836450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016ja023173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052012228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/swsc/2017036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101020167"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The St. Patrick\u2019s Day geomagnetic storm on March 17, 2015, has been chosen by the space community for synergetic analysis to build a more comprehensive picture of the storm\u2019s origin and evolution. This storm had an unusually long (~ 17 h) main phase. During this period, many substorm-like activations occurred. These activations resulted in bursts of geomagnetically induced currents (GICs) in power lines on the Kola peninsula. To examine the substorm activations in more detail, we apply various data processing techniques for the world-wide array of magnetometers: the virtual magnetograms, magnetic latitude\u2013local time (MLT) snapshots, and magnetic keograms. These techniques are simple tools that are supplementary to more advanced facilities developed for the analysis of SuperDARN, IMAGE, and CARISMA arrays. We compare the global spatial localization and time evolution of the geomagnetic X-component disturbance and magnetic field variability measured by the Hilbert transform of time derivative dB/dt. The latitude-MLT mapping of these magnitudes shows that very often a region with highest magnetic variability does not overlap with a substorm \u201cepicenter\u201d but is shifted to its poleward or equatorward boundaries. Highest variability of the geomagnetic field, and consequently intense GICs, are caused by medium-scale fast varying structures. There is no one-to-one correspondence between substorm intensity and GIC magnitude.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40623-018-0933-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4896204", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1294798", 
        "issn": [
          "1343-8832", 
          "1880-5981"
        ], 
        "name": "Earth, Planets and Space", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "name": "Ground geomagnetic field and GIC response to March 17, 2015, storm", 
    "pagination": "157", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7302a19acef961dc7cb4f01c584a8cbc31e1bbd24976645c5097e79a688f1858"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40623-018-0933-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107341528"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40623-018-0933-2", 
      "https://app.dimensions.ai/details/publication/pub.1107341528"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000544.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40623-018-0933-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40623-018-0933-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40623-018-0933-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40623-018-0933-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40623-018-0933-2'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40623-018-0933-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndb9379a275d84b70b012c26f6bed197c
4 schema:citation https://doi.org/10.1002/2015gl064816
5 https://doi.org/10.1002/2015ja021509
6 https://doi.org/10.1002/2015sw001213
7 https://doi.org/10.1002/2016gl068257
8 https://doi.org/10.1002/2016ja022400
9 https://doi.org/10.1002/2016ja023173
10 https://doi.org/10.1002/2016ja023237
11 https://doi.org/10.1002/swe.20073
12 https://doi.org/10.1016/s0273-1177(97)01096-x
13 https://doi.org/10.1029/2011ja016779
14 https://doi.org/10.1029/2011sw000680
15 https://doi.org/10.1029/2012ja017683
16 https://doi.org/10.1029/97gl00538
17 https://doi.org/10.1029/gm125p0011
18 https://doi.org/10.1051/swsc/2017036
19 https://doi.org/10.5194/angeo-19-1107-2001
20 schema:datePublished 2018-12
21 schema:datePublishedReg 2018-12-01
22 schema:description The St. Patrick’s Day geomagnetic storm on March 17, 2015, has been chosen by the space community for synergetic analysis to build a more comprehensive picture of the storm’s origin and evolution. This storm had an unusually long (~ 17 h) main phase. During this period, many substorm-like activations occurred. These activations resulted in bursts of geomagnetically induced currents (GICs) in power lines on the Kola peninsula. To examine the substorm activations in more detail, we apply various data processing techniques for the world-wide array of magnetometers: the virtual magnetograms, magnetic latitude–local time (MLT) snapshots, and magnetic keograms. These techniques are simple tools that are supplementary to more advanced facilities developed for the analysis of SuperDARN, IMAGE, and CARISMA arrays. We compare the global spatial localization and time evolution of the geomagnetic X-component disturbance and magnetic field variability measured by the Hilbert transform of time derivative dB/dt. The latitude-MLT mapping of these magnitudes shows that very often a region with highest magnetic variability does not overlap with a substorm “epicenter” but is shifted to its poleward or equatorward boundaries. Highest variability of the geomagnetic field, and consequently intense GICs, are caused by medium-scale fast varying structures. There is no one-to-one correspondence between substorm intensity and GIC magnitude.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N7251e4c7f6ca4074a7d1d86f58ee89d0
27 Nf68a4cfc6ec640ee8531a07cb5e8f328
28 sg:journal.1294798
29 schema:name Ground geomagnetic field and GIC response to March 17, 2015, storm
30 schema:pagination 157
31 schema:productId N3aa192432f83436fa8c0a67b2e72cb08
32 N5dce30f2745c4ca88d62589d8f30e3f6
33 Ncb2217d040c3408fb6eadf3fd3dca73a
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107341528
35 https://doi.org/10.1186/s40623-018-0933-2
36 schema:sdDatePublished 2019-04-10T20:52
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N788666959de34789a5c5ff1063b90c19
39 schema:url https://link.springer.com/10.1186%2Fs40623-018-0933-2
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N161b0adf074d4a8f87b6499426c84545 rdf:first sg:person.012234460644.61
44 rdf:rest rdf:nil
45 N3aa192432f83436fa8c0a67b2e72cb08 schema:name readcube_id
46 schema:value 7302a19acef961dc7cb4f01c584a8cbc31e1bbd24976645c5097e79a688f1858
47 rdf:type schema:PropertyValue
48 N5dce30f2745c4ca88d62589d8f30e3f6 schema:name doi
49 schema:value 10.1186/s40623-018-0933-2
50 rdf:type schema:PropertyValue
51 N7251e4c7f6ca4074a7d1d86f58ee89d0 schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 N788666959de34789a5c5ff1063b90c19 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N9cd1694049e14ab1a00368f789db4b6a rdf:first sg:person.015243317657.57
56 rdf:rest N161b0adf074d4a8f87b6499426c84545
57 Ncb2217d040c3408fb6eadf3fd3dca73a schema:name dimensions_id
58 schema:value pub.1107341528
59 rdf:type schema:PropertyValue
60 Ndb9379a275d84b70b012c26f6bed197c rdf:first sg:person.013323046147.97
61 rdf:rest Ndda59e49e3c746ffa368aebb17cf3848
62 Ndda59e49e3c746ffa368aebb17cf3848 rdf:first sg:person.010715034475.01
63 rdf:rest N9cd1694049e14ab1a00368f789db4b6a
64 Nf68a4cfc6ec640ee8531a07cb5e8f328 schema:volumeNumber 70
65 rdf:type schema:PublicationVolume
66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information and Computing Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
70 schema:name Artificial Intelligence and Image Processing
71 rdf:type schema:DefinedTerm
72 sg:grant.4896204 http://pending.schema.org/fundedItem sg:pub.10.1186/s40623-018-0933-2
73 rdf:type schema:MonetaryGrant
74 sg:journal.1294798 schema:issn 1343-8832
75 1880-5981
76 schema:name Earth, Planets and Space
77 rdf:type schema:Periodical
78 sg:person.010715034475.01 schema:affiliation https://www.grid.ac/institutes/grid.465308.c
79 schema:familyName Pilipenko
80 schema:givenName Vyacheslav A.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010715034475.01
82 rdf:type schema:Person
83 sg:person.012234460644.61 schema:affiliation https://www.grid.ac/institutes/grid.467115.0
84 schema:familyName Sakharov
85 schema:givenName Yaroslav A.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012234460644.61
87 rdf:type schema:Person
88 sg:person.013323046147.97 schema:affiliation https://www.grid.ac/institutes/grid.435352.6
89 schema:familyName Kozyreva
90 schema:givenName Olga V.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323046147.97
92 rdf:type schema:Person
93 sg:person.015243317657.57 schema:affiliation https://www.grid.ac/institutes/grid.467115.0
94 schema:familyName Belakhovsky
95 schema:givenName Vladimir B.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015243317657.57
97 rdf:type schema:Person
98 https://doi.org/10.1002/2015gl064816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010169040
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/2015ja021509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033927959
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1002/2015sw001213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043577903
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/2016gl068257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031687937
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/2016ja022400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014951872
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/2016ja023173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052012228
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/2016ja023237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031664757
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/swe.20073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042871746
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0273-1177(97)01096-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027808649
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1029/2011ja016779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033974314
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1029/2011sw000680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004089589
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1029/2012ja017683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050836450
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1029/97gl00538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049401757
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1029/gm125p0011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046031508
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1051/swsc/2017036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101020167
127 rdf:type schema:CreativeWork
128 https://doi.org/10.5194/angeo-19-1107-2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020077202
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.435352.6 schema:alternateName Schmidt Institute of Physics of the Earth
131 schema:name Institute of Physics of the Earth, Moscow, Russia
132 rdf:type schema:Organization
133 https://www.grid.ac/institutes/grid.465308.c schema:alternateName Geophysical Center
134 schema:name Geophysical Center, Moscow, Russia
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.467115.0 schema:alternateName Polar Geophysical Institute
137 schema:name Polar Geophysical Institute, Apatity, Russia
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...