UDECON: deconvolution optimization software for restoring high-resolution records from pass-through paleomagnetic measurements View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Chuang Xuan, Hirokuni Oda

ABSTRACT

The rapid accumulation of continuous paleomagnetic and rock magnetic records acquired from pass-through measurements on superconducting rock magnetometers (SRM) has greatly contributed to our understanding of the paleomagnetic field and paleo-environment. Pass-through measurements are inevitably smoothed and altered by the convolution effect of SRM sensor response, and deconvolution is needed to restore high-resolution paleomagnetic and environmental signals. Although various deconvolution algorithms have been developed, the lack of easy-to-use software has hindered the practical application of deconvolution. Here, we present standalone graphical software UDECON as a convenient tool to perform optimized deconvolution for pass-through paleomagnetic measurements using the algorithm recently developed by Oda and Xuan (Geochem Geophys Geosyst 15:3907–3924, 2014). With the preparation of a format file, UDECON can directly read pass-through paleomagnetic measurement files collected at different laboratories. After the SRM sensor response is determined and loaded to the software, optimized deconvolution can be conducted using two different approaches (i.e., "Grid search" and "Simplex method") with adjustable initial values or ranges for smoothness, corrections of sample length, and shifts in measurement position. UDECON provides a suite of tools to view conveniently and check various types of original measurement and deconvolution data. Multiple steps of measurement and/or deconvolution data can be compared simultaneously to check the consistency and to guide further deconvolution optimization. Deconvolved data together with the loaded original measurement and SRM sensor response data can be saved and reloaded for further treatment in UDECON. Users can also export the optimized deconvolution data to a text file for analysis in other software. More... »

PAGES

183

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40623-015-0332-x

DOI

http://dx.doi.org/10.1186/s40623-015-0332-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015307352


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Oceanography Centre", 
          "id": "https://www.grid.ac/institutes/grid.418022.d", 
          "name": [
            "School of Ocean and Earth Science, National Oceanography Centre, Southampton, University of Southampton, Waterfront Campus, European Way, SO14 3ZH, Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xuan", 
        "givenName": "Chuang", 
        "id": "sg:person.0620523574.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620523574.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geological Survey of Japan", 
          "id": "https://www.grid.ac/institutes/grid.466781.a", 
          "name": [
            "Institute of Geology and Geoinformation, Geological Survey of Japan, AIST, Central 7, 1-1-1 Higashi, 305-8567, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oda", 
        "givenName": "Hirokuni", 
        "id": "sg:person.015110571140.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110571140.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/gl001i004p00185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000797452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.1993.tb06994.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004067071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.1993.tb06994.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004067071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/rg014i004p00591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004762733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pepi.2005.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004862453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-246x.2002.01692.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009578205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002gl014927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009827530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014gc005513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014182684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/366234a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015876215", 
          "https://doi.org/10.1038/366234a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.quascirev.2012.10.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016821362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bf03352082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023393177", 
          "https://doi.org/10.1186/bf03352082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/95jb02811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024882266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gc002584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031859939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5636/jgg.46.613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034124011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-4423-6_283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037205040", 
          "https://doi.org/10.1007/978-1-4020-4423-6_283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.1991.tb05693.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039214196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.1991.tb05693.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039214196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/20420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042209469", 
          "https://doi.org/10.1038/20420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/20420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042209469", 
          "https://doi.org/10.1038/20420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gc002991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047796122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsl.2009.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048052873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051177709", 
          "https://doi.org/10.1038/nature03674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051177709", 
          "https://doi.org/10.1038/nature03674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/93gl00213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053607020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623496303470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1101840889", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "The rapid accumulation of continuous paleomagnetic and rock magnetic records acquired from pass-through measurements on superconducting rock magnetometers (SRM) has greatly contributed to our understanding of the paleomagnetic field and paleo-environment. Pass-through measurements are inevitably smoothed and altered by the convolution effect of SRM sensor response, and deconvolution is needed to restore high-resolution paleomagnetic and environmental signals. Although various deconvolution algorithms have been developed, the lack of easy-to-use software has hindered the practical application of deconvolution. Here, we present standalone graphical software UDECON as a convenient tool to perform optimized deconvolution for pass-through paleomagnetic measurements using the algorithm recently developed by Oda and Xuan (Geochem Geophys Geosyst 15:3907\u20133924, 2014). With the preparation of a format file, UDECON can directly read pass-through paleomagnetic measurement files collected at different laboratories. After the SRM sensor response is determined and loaded to the software, optimized deconvolution can be conducted using two different approaches (i.e., \"Grid search\" and \"Simplex method\") with adjustable initial values or ranges for smoothness, corrections of sample length, and shifts in measurement position. UDECON provides a suite of tools to view conveniently and check various types of original measurement and deconvolution data. Multiple steps of measurement and/or deconvolution data can be compared simultaneously to check the consistency and to guide further deconvolution optimization. Deconvolved data together with the loaded original measurement and SRM sensor response data can be saved and reloaded for further treatment in UDECON. Users can also export the optimized deconvolution data to a text file for analysis in other software.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40623-015-0332-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2763830", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6107526", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6113579", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2782152", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1294798", 
        "issn": [
          "1343-8832", 
          "1880-5981"
        ], 
        "name": "Earth, Planets and Space", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "UDECON: deconvolution optimization software for restoring high-resolution records from pass-through paleomagnetic measurements", 
    "pagination": "183", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "48eeb75e9dd93c61d9efcc37792a3c4b011b2c4735cf6cac3ff81d541274e881"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40623-015-0332-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015307352"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40623-015-0332-x", 
      "https://app.dimensions.ai/details/publication/pub.1015307352"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88227_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs40623-015-0332-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40623-015-0332-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40623-015-0332-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40623-015-0332-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40623-015-0332-x'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40623-015-0332-x schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N2b859523bb24471a8f0c94add1fb72fb
4 schema:citation sg:pub.10.1007/978-1-4020-4423-6_283
5 sg:pub.10.1038/20420
6 sg:pub.10.1038/366234a0
7 sg:pub.10.1038/nature03674
8 sg:pub.10.1186/bf03352082
9 https://app.dimensions.ai/details/publication/pub.1101840889
10 https://doi.org/10.1002/2014gc005513
11 https://doi.org/10.1016/j.epsl.2009.03.012
12 https://doi.org/10.1016/j.pepi.2005.03.021
13 https://doi.org/10.1016/j.quascirev.2012.10.036
14 https://doi.org/10.1029/2002gl014927
15 https://doi.org/10.1029/2009gc002584
16 https://doi.org/10.1029/2009gc002991
17 https://doi.org/10.1029/93gl00213
18 https://doi.org/10.1029/95jb02811
19 https://doi.org/10.1029/gl001i004p00185
20 https://doi.org/10.1029/rg014i004p00591
21 https://doi.org/10.1046/j.1365-246x.2002.01692.x
22 https://doi.org/10.1111/j.1365-246x.1991.tb05693.x
23 https://doi.org/10.1111/j.1365-246x.1993.tb06994.x
24 https://doi.org/10.1137/s1052623496303470
25 https://doi.org/10.5636/jgg.46.613
26 schema:datePublished 2015-12
27 schema:datePublishedReg 2015-12-01
28 schema:description The rapid accumulation of continuous paleomagnetic and rock magnetic records acquired from pass-through measurements on superconducting rock magnetometers (SRM) has greatly contributed to our understanding of the paleomagnetic field and paleo-environment. Pass-through measurements are inevitably smoothed and altered by the convolution effect of SRM sensor response, and deconvolution is needed to restore high-resolution paleomagnetic and environmental signals. Although various deconvolution algorithms have been developed, the lack of easy-to-use software has hindered the practical application of deconvolution. Here, we present standalone graphical software UDECON as a convenient tool to perform optimized deconvolution for pass-through paleomagnetic measurements using the algorithm recently developed by Oda and Xuan (Geochem Geophys Geosyst 15:3907–3924, 2014). With the preparation of a format file, UDECON can directly read pass-through paleomagnetic measurement files collected at different laboratories. After the SRM sensor response is determined and loaded to the software, optimized deconvolution can be conducted using two different approaches (i.e., "Grid search" and "Simplex method") with adjustable initial values or ranges for smoothness, corrections of sample length, and shifts in measurement position. UDECON provides a suite of tools to view conveniently and check various types of original measurement and deconvolution data. Multiple steps of measurement and/or deconvolution data can be compared simultaneously to check the consistency and to guide further deconvolution optimization. Deconvolved data together with the loaded original measurement and SRM sensor response data can be saved and reloaded for further treatment in UDECON. Users can also export the optimized deconvolution data to a text file for analysis in other software.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N270625b996a54efbb77e1f07395cb162
33 N4fe8a93048314c85a8ef2920c35e2973
34 sg:journal.1294798
35 schema:name UDECON: deconvolution optimization software for restoring high-resolution records from pass-through paleomagnetic measurements
36 schema:pagination 183
37 schema:productId N75ccc006aade4aaea40bdefa8eb6ade3
38 N91ce1ee1a27a489480d66b5cd98d204d
39 Nac046f54e4be47f18dbd7dea4ea8ab05
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015307352
41 https://doi.org/10.1186/s40623-015-0332-x
42 schema:sdDatePublished 2019-04-11T13:08
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nb511c9aaaa6b49f58bd119ff1808003a
45 schema:url http://link.springer.com/10.1186%2Fs40623-015-0332-x
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N270625b996a54efbb77e1f07395cb162 schema:volumeNumber 67
50 rdf:type schema:PublicationVolume
51 N2b859523bb24471a8f0c94add1fb72fb rdf:first sg:person.0620523574.37
52 rdf:rest N4dd733e8090640deae4bda709fe25f13
53 N4dd733e8090640deae4bda709fe25f13 rdf:first sg:person.015110571140.42
54 rdf:rest rdf:nil
55 N4fe8a93048314c85a8ef2920c35e2973 schema:issueNumber 1
56 rdf:type schema:PublicationIssue
57 N75ccc006aade4aaea40bdefa8eb6ade3 schema:name readcube_id
58 schema:value 48eeb75e9dd93c61d9efcc37792a3c4b011b2c4735cf6cac3ff81d541274e881
59 rdf:type schema:PropertyValue
60 N91ce1ee1a27a489480d66b5cd98d204d schema:name doi
61 schema:value 10.1186/s40623-015-0332-x
62 rdf:type schema:PropertyValue
63 Nac046f54e4be47f18dbd7dea4ea8ab05 schema:name dimensions_id
64 schema:value pub.1015307352
65 rdf:type schema:PropertyValue
66 Nb511c9aaaa6b49f58bd119ff1808003a schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information Systems
73 rdf:type schema:DefinedTerm
74 sg:grant.2763830 http://pending.schema.org/fundedItem sg:pub.10.1186/s40623-015-0332-x
75 rdf:type schema:MonetaryGrant
76 sg:grant.2782152 http://pending.schema.org/fundedItem sg:pub.10.1186/s40623-015-0332-x
77 rdf:type schema:MonetaryGrant
78 sg:grant.6107526 http://pending.schema.org/fundedItem sg:pub.10.1186/s40623-015-0332-x
79 rdf:type schema:MonetaryGrant
80 sg:grant.6113579 http://pending.schema.org/fundedItem sg:pub.10.1186/s40623-015-0332-x
81 rdf:type schema:MonetaryGrant
82 sg:journal.1294798 schema:issn 1343-8832
83 1880-5981
84 schema:name Earth, Planets and Space
85 rdf:type schema:Periodical
86 sg:person.015110571140.42 schema:affiliation https://www.grid.ac/institutes/grid.466781.a
87 schema:familyName Oda
88 schema:givenName Hirokuni
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110571140.42
90 rdf:type schema:Person
91 sg:person.0620523574.37 schema:affiliation https://www.grid.ac/institutes/grid.418022.d
92 schema:familyName Xuan
93 schema:givenName Chuang
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620523574.37
95 rdf:type schema:Person
96 sg:pub.10.1007/978-1-4020-4423-6_283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037205040
97 https://doi.org/10.1007/978-1-4020-4423-6_283
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/20420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042209469
100 https://doi.org/10.1038/20420
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/366234a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015876215
103 https://doi.org/10.1038/366234a0
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nature03674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051177709
106 https://doi.org/10.1038/nature03674
107 rdf:type schema:CreativeWork
108 sg:pub.10.1186/bf03352082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023393177
109 https://doi.org/10.1186/bf03352082
110 rdf:type schema:CreativeWork
111 https://app.dimensions.ai/details/publication/pub.1101840889 schema:CreativeWork
112 https://doi.org/10.1002/2014gc005513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014182684
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.epsl.2009.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048052873
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.pepi.2005.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004862453
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.quascirev.2012.10.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016821362
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1029/2002gl014927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009827530
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1029/2009gc002584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031859939
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1029/2009gc002991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047796122
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1029/93gl00213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053607020
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1029/95jb02811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024882266
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1029/gl001i004p00185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000797452
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1029/rg014i004p00591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004762733
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1046/j.1365-246x.2002.01692.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009578205
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1111/j.1365-246x.1991.tb05693.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039214196
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1111/j.1365-246x.1993.tb06994.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004067071
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1137/s1052623496303470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883551
141 rdf:type schema:CreativeWork
142 https://doi.org/10.5636/jgg.46.613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034124011
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.418022.d schema:alternateName National Oceanography Centre
145 schema:name School of Ocean and Earth Science, National Oceanography Centre, Southampton, University of Southampton, Waterfront Campus, European Way, SO14 3ZH, Southampton, UK
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.466781.a schema:alternateName Geological Survey of Japan
148 schema:name Institute of Geology and Geoinformation, Geological Survey of Japan, AIST, Central 7, 1-1-1 Higashi, 305-8567, Tsukuba, Japan
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...