Parameterization of vertical dispersion coefficient over idealized rough surfaces in isothermal conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Chun-Ho Liu, Ziwei Mo, Zhangquan Wu

ABSTRACT

Urban air quality is an important problem nowadays because of the close proximity of sources and receptors in densely built environment. Gaussian plume models have been commonly employed in the industry to estimate air pollution impact over open terrain for decades. However, they should be applied cautiously to urban environment in view of the complicated recirculating flows and turbulence-generation mechanism in the wakes around/over buildings. In particular, one of the key components in Gaussian plume models, dispersion coefficient σz, is usually determined empirically based on atmospheric stratification that might overlook the effect of rough urban surfaces in the bottom of atmospheric boundary layer, resulting in prediction uncertainty. In this paper, we report our recent study of the transport processes over idealized rough surfaces (repeated ribs in crossflows) to simulate the flows and transport processes after a ground-level pollutant source in crossflows over hypothetical urban areas. The effect of aerodynamic resistance (controlled by the rib separation b) on pollutant plume dispersion (measured by vertical dispersion coefficient σz) is critically examined. First of all, analytical solution shows that σz is proportional to x1/2 × δ1/2 × f1/4, where x is the downwind distance after the pollutant source, δ the turbulent boundary layer thickness, f (= 2uτ2/U∞2) the friction factor, uτ the friction velocity and U∞ the free-stream wind speed. Afterward, a complementary approach, using both wind-tunnel measurements and large-eddy simulation results, is used to verify the newly developed theoretical hypothesis. Although mild discrepancies are observed among various solutions (due to unavoidable scaling effect), the aforementioned analytical proportionality is clearly depicted. The findings unveil the weakness of conventional practice using Gaussian plume models, proposing a new parameterization of dispersion coefficient for pollutant plume dispersion over urban areas. More... »

PAGES

24

Journal

TITLE

Geoscience Letters

ISSUE

1

VOLUME

5

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40562-018-0123-x

    DOI

    http://dx.doi.org/10.1186/s40562-018-0123-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107186459


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.194645.b", 
              "name": [
                "Department of Mechanical Engineering, The University of Hong Kong, 7/F, Haking Wong Building, Pokfulam Road, Hong Kong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Chun-Ho", 
            "id": "sg:person.016314610117.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016314610117.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.194645.b", 
              "name": [
                "Department of Mechanical Engineering, The University of Hong Kong, 7/F, Haking Wong Building, Pokfulam Road, Hong Kong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mo", 
            "givenName": "Ziwei", 
            "id": "sg:person.0655305143.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655305143.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.194645.b", 
              "name": [
                "Department of Mechanical Engineering, The University of Hong Kong, 7/F, Haking Wong Building, Pokfulam Road, Hong Kong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Zhangquan", 
            "id": "sg:person.011721750030.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721750030.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0004-6981(86)90003-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001229103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-6981(86)90003-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001229103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1923.0132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010073245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envpol.2010.11.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011207153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011681061", 
              "https://doi.org/10.1038/nature15371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1352-2310(03)00473-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013651771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1352-2310(03)00473-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013651771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-016-1877-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014876009", 
              "https://doi.org/10.1007/s00704-016-1877-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-016-1877-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014876009", 
              "https://doi.org/10.1007/s00704-016-1877-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1352-2310(98)80006-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019132998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.fluid.35.101101.161147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026017057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/1352-2310(95)00254-v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029071722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9991(75)90093-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029421827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10546-011-9671-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029620771", 
              "https://doi.org/10.1007/s10546-011-9671-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1352-2310(00)00456-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030755551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-7788(88)90026-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031750077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-7788(88)90026-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031750077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11270-006-9182-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032589910", 
              "https://doi.org/10.1007/s11270-006-9182-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1352-2310(01)00383-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034314528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1016060103448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035716420", 
              "https://doi.org/10.1023/a:1016060103448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10546-015-0063-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044245873", 
              "https://doi.org/10.1007/s10546-015-0063-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atmosenv.2004.08.045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045171156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10546-012-9785-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045652933", 
              "https://doi.org/10.1007/s10546-012-9785-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-6981(75)90089-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052033179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-6981(75)90089-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052033179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.est.6b04752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055089767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0022-3735/4/3/016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058974789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3119492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062101707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063451320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/gmd-6-445-2013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072670301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18356/8519891f-en", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107180546"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Urban air quality is an important problem nowadays because of the close proximity of sources and receptors in densely built environment. Gaussian plume models have been commonly employed in the industry to estimate air pollution impact over open terrain for decades. However, they should be applied cautiously to urban environment in view of the complicated recirculating flows and turbulence-generation mechanism in the wakes around/over buildings. In particular, one of the key components in Gaussian plume models, dispersion coefficient \u03c3z, is usually determined empirically based on atmospheric stratification that might overlook the effect of rough urban surfaces in the bottom of atmospheric boundary layer, resulting in prediction uncertainty. In this paper, we report our recent study of the transport processes over idealized rough surfaces (repeated ribs in crossflows) to simulate the flows and transport processes after a ground-level pollutant source in crossflows over hypothetical urban areas. The effect of aerodynamic resistance (controlled by the rib separation b) on pollutant plume dispersion (measured by vertical dispersion coefficient \u03c3z) is critically examined. First of all, analytical solution shows that \u03c3z is proportional to x1/2 \u00d7 \u03b41/2 \u00d7 f1/4, where x is the downwind distance after the pollutant source, \u03b4 the turbulent boundary layer thickness, f (= 2u\u03c42/U\u221e2) the friction factor, u\u03c4 the friction velocity and U\u221e the free-stream wind speed. Afterward, a complementary approach, using both wind-tunnel measurements and large-eddy simulation results, is used to verify the newly developed theoretical hypothesis. Although mild discrepancies are observed among various solutions (due to unavoidable scaling effect), the aforementioned analytical proportionality is clearly depicted. The findings unveil the weakness of conventional practice using Gaussian plume models, proposing a new parameterization of dispersion coefficient for pollutant plume dispersion over urban areas.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s40562-018-0123-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7430658", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136511", 
            "issn": [
              "2196-4092"
            ], 
            "name": "Geoscience Letters", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "name": "Parameterization of vertical dispersion coefficient over idealized rough surfaces in isothermal conditions", 
        "pagination": "24", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b551296f79e9c34388670ef113ba868799178d376f0a7b6a6a0361ce75f16263"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40562-018-0123-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107186459"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40562-018-0123-x", 
          "https://app.dimensions.ai/details/publication/pub.1107186459"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000536.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fs40562-018-0123-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40562-018-0123-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40562-018-0123-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40562-018-0123-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40562-018-0123-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40562-018-0123-x schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N8698bb5a1a504c779ae502a5f241457f
    4 schema:citation sg:pub.10.1007/s00704-016-1877-8
    5 sg:pub.10.1007/s10546-011-9671-8
    6 sg:pub.10.1007/s10546-012-9785-7
    7 sg:pub.10.1007/s10546-015-0063-3
    8 sg:pub.10.1007/s11270-006-9182-2
    9 sg:pub.10.1023/a:1016060103448
    10 sg:pub.10.1038/nature15371
    11 https://doi.org/10.1016/0004-6981(75)90089-x
    12 https://doi.org/10.1016/0004-6981(86)90003-x
    13 https://doi.org/10.1016/0021-9991(75)90093-5
    14 https://doi.org/10.1016/0378-7788(88)90026-6
    15 https://doi.org/10.1016/1352-2310(95)00254-v
    16 https://doi.org/10.1016/j.atmosenv.2004.08.045
    17 https://doi.org/10.1016/j.envpol.2010.11.012
    18 https://doi.org/10.1016/s1352-2310(00)00456-8
    19 https://doi.org/10.1016/s1352-2310(01)00383-1
    20 https://doi.org/10.1016/s1352-2310(03)00473-4
    21 https://doi.org/10.1016/s1352-2310(98)80006-x
    22 https://doi.org/10.1021/acs.est.6b04752
    23 https://doi.org/10.1088/0022-3735/4/3/016
    24 https://doi.org/10.1098/rspa.1923.0132
    25 https://doi.org/10.1115/1.3119492
    26 https://doi.org/10.1146/annurev.fluid.35.101101.161147
    27 https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
    28 https://doi.org/10.18356/8519891f-en
    29 https://doi.org/10.5194/gmd-6-445-2013
    30 schema:datePublished 2018-12
    31 schema:datePublishedReg 2018-12-01
    32 schema:description Urban air quality is an important problem nowadays because of the close proximity of sources and receptors in densely built environment. Gaussian plume models have been commonly employed in the industry to estimate air pollution impact over open terrain for decades. However, they should be applied cautiously to urban environment in view of the complicated recirculating flows and turbulence-generation mechanism in the wakes around/over buildings. In particular, one of the key components in Gaussian plume models, dispersion coefficient σz, is usually determined empirically based on atmospheric stratification that might overlook the effect of rough urban surfaces in the bottom of atmospheric boundary layer, resulting in prediction uncertainty. In this paper, we report our recent study of the transport processes over idealized rough surfaces (repeated ribs in crossflows) to simulate the flows and transport processes after a ground-level pollutant source in crossflows over hypothetical urban areas. The effect of aerodynamic resistance (controlled by the rib separation b) on pollutant plume dispersion (measured by vertical dispersion coefficient σz) is critically examined. First of all, analytical solution shows that σz is proportional to x1/2 × δ1/2 × f1/4, where x is the downwind distance after the pollutant source, δ the turbulent boundary layer thickness, f (= 2uτ2/U∞2) the friction factor, uτ the friction velocity and U∞ the free-stream wind speed. Afterward, a complementary approach, using both wind-tunnel measurements and large-eddy simulation results, is used to verify the newly developed theoretical hypothesis. Although mild discrepancies are observed among various solutions (due to unavoidable scaling effect), the aforementioned analytical proportionality is clearly depicted. The findings unveil the weakness of conventional practice using Gaussian plume models, proposing a new parameterization of dispersion coefficient for pollutant plume dispersion over urban areas.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N07a444e1c9034b96860741819a697722
    37 N7b39d6384de144648b365be0c9580057
    38 sg:journal.1136511
    39 schema:name Parameterization of vertical dispersion coefficient over idealized rough surfaces in isothermal conditions
    40 schema:pagination 24
    41 schema:productId N157480858d8049e18e774b5e5828d469
    42 N6661e452850d420e9cba39466b54705e
    43 N7aabed48968548d6848032e13443f724
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107186459
    45 https://doi.org/10.1186/s40562-018-0123-x
    46 schema:sdDatePublished 2019-04-10T15:56
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N8563d5af31cc40fc9c3e1f8518ce88ab
    49 schema:url http://link.springer.com/10.1186%2Fs40562-018-0123-x
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N07a444e1c9034b96860741819a697722 schema:volumeNumber 5
    54 rdf:type schema:PublicationVolume
    55 N157480858d8049e18e774b5e5828d469 schema:name dimensions_id
    56 schema:value pub.1107186459
    57 rdf:type schema:PropertyValue
    58 N6661e452850d420e9cba39466b54705e schema:name doi
    59 schema:value 10.1186/s40562-018-0123-x
    60 rdf:type schema:PropertyValue
    61 N6ead6aead03f4bc9a0af9a2c3d022906 rdf:first sg:person.011721750030.60
    62 rdf:rest rdf:nil
    63 N7aabed48968548d6848032e13443f724 schema:name readcube_id
    64 schema:value b551296f79e9c34388670ef113ba868799178d376f0a7b6a6a0361ce75f16263
    65 rdf:type schema:PropertyValue
    66 N7b39d6384de144648b365be0c9580057 schema:issueNumber 1
    67 rdf:type schema:PublicationIssue
    68 N8563d5af31cc40fc9c3e1f8518ce88ab schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 N8698bb5a1a504c779ae502a5f241457f rdf:first sg:person.016314610117.49
    71 rdf:rest Nc1a25976e5114d44a2627dbbab46cb09
    72 Nc1a25976e5114d44a2627dbbab46cb09 rdf:first sg:person.0655305143.09
    73 rdf:rest N6ead6aead03f4bc9a0af9a2c3d022906
    74 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Engineering
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Interdisciplinary Engineering
    79 rdf:type schema:DefinedTerm
    80 sg:grant.7430658 http://pending.schema.org/fundedItem sg:pub.10.1186/s40562-018-0123-x
    81 rdf:type schema:MonetaryGrant
    82 sg:journal.1136511 schema:issn 2196-4092
    83 schema:name Geoscience Letters
    84 rdf:type schema:Periodical
    85 sg:person.011721750030.60 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
    86 schema:familyName Wu
    87 schema:givenName Zhangquan
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721750030.60
    89 rdf:type schema:Person
    90 sg:person.016314610117.49 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
    91 schema:familyName Liu
    92 schema:givenName Chun-Ho
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016314610117.49
    94 rdf:type schema:Person
    95 sg:person.0655305143.09 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
    96 schema:familyName Mo
    97 schema:givenName Ziwei
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655305143.09
    99 rdf:type schema:Person
    100 sg:pub.10.1007/s00704-016-1877-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014876009
    101 https://doi.org/10.1007/s00704-016-1877-8
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s10546-011-9671-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029620771
    104 https://doi.org/10.1007/s10546-011-9671-8
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s10546-012-9785-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045652933
    107 https://doi.org/10.1007/s10546-012-9785-7
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s10546-015-0063-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044245873
    110 https://doi.org/10.1007/s10546-015-0063-3
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s11270-006-9182-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032589910
    113 https://doi.org/10.1007/s11270-006-9182-2
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1023/a:1016060103448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035716420
    116 https://doi.org/10.1023/a:1016060103448
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1038/nature15371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011681061
    119 https://doi.org/10.1038/nature15371
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/0004-6981(75)90089-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052033179
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/0004-6981(86)90003-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001229103
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/0021-9991(75)90093-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029421827
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/0378-7788(88)90026-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031750077
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/1352-2310(95)00254-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1029071722
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.atmosenv.2004.08.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045171156
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.envpol.2010.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011207153
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/s1352-2310(00)00456-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030755551
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/s1352-2310(01)00383-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034314528
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/s1352-2310(03)00473-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013651771
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/s1352-2310(98)80006-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019132998
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1021/acs.est.6b04752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055089767
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1088/0022-3735/4/3/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058974789
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1098/rspa.1923.0132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010073245
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1115/1.3119492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062101707
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1146/annurev.fluid.35.101101.161147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026017057
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063451320
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.18356/8519891f-en schema:sameAs https://app.dimensions.ai/details/publication/pub.1107180546
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.5194/gmd-6-445-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072670301
    158 rdf:type schema:CreativeWork
    159 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
    160 schema:name Department of Mechanical Engineering, The University of Hong Kong, 7/F, Haking Wong Building, Pokfulam Road, Hong Kong, China
    161 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...